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ABSTRACT
Recent years have witnessed the rapid development of the en-

crypted database, due to the increasing number of data privacy

breaches and the corresponding laws and regulations that caused

millions of dollars in loss. These encrypted databases may rely on

different techniques, such as cryptographic primitives and trusted

execution environments. In this work, we investigate the feasibil-

ity of utilizing fully homomorphic encryption (FHE) to support

unbounded database aggregation queries, which typically involve

comparisons as filtering predicates and a final aggregation. These

operators are theoretically supported by FHE, but need careful

algorithm design to maximize the efficiency and have not been ex-

plored before. We creatively use two types of FHE schemes, i.e., one
for numerical and one for binary value, to enjoy their advantages

respectively. To bridge the encrypted values between these two

schemes for seamless query processing without client-server inter-

action, we propose a novel ciphertext transformation mechanism,

which is of independent research interest, to close this gap. We

further implement our system and test it over three TPC-H queries

and a query over a real social media e-commerce database. Evalu-

ation results show that, to process an aggregation query over 8𝑘

encrypted rows takes about 430 seconds. Although it is slower than

plaintext processing in magnitudes and still has much room for

improvement, as the very first work in this domain, our system

demonstrates the feasibility of using FHE to process OLAP queries.
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1 INTRODUCTION
With the incomparable advantage in storage capacity and comput-

ing capability, cloud services have changed the landscape of how
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enterprises build their business. By moving the whole business

logic and associated data to the cloud at a relatively reasonable cost,

an enterprise could enjoy the hassle-free, one-stop service to man-

age their own business. Database Management Systems (DBMS) is

one of the many examples that benefited from the cloud service.

Cloud-based DBMS, such as Microsoft Azure SQL Server [43], AWS

Aurora [3], Alibaba Cloud PolarDB [10], help millions of businesses

to store and analyze their data on a daily basis. One of the funda-

mental assumptions in such DBMS is that the data owners trust the
cloud service providers (CSP), as their invaluable data are in the

hands of the CSP. However, this is not always the case: CSP could

be compromised by cyber-attacks that leak its users’ data. More

severely, a malicious database administrator (DBA) could covertly

steal sensitive information from its clients without being noticed.

Traditional approaches such as transparent data encryption can mit-

igate such concern to a certain degree, by protecting the data at rest

and against third-party intruders. However, these approaches still

authorize the database system with the decryption key to obtain

the plaintext data whenever computation is required.

Over the past decade, researchers have progressively proposed,

improved and commercialized encrypted database to protect user

data privacy while enabling encrypted data processing and main-

taining query expressiveness. Cryptography-based approaches,

such as CryptDB [51], MONOMI [59], Seabed [48] and SAGMA [31],

explore various cryptographic primitives such as deterministic en-

cryption (DET), searchable encryption (SE), partially homomorphic

encryption (PHE) and order preserving/revealing encryption (OPE,

ORE) etc.. Another streamline of work, such as TrustedDB [4], Ci-

pherbase [2] and ObliDB [22], leverage on TEE to put the sensitive

data into a hardware-based trust zone called enclave for processing,

and encrypt both the data and processing results whenever they

leave the enclave. The TEE approach eventually leads to commer-

cialized encrypted database systems, e.g., Microsoft SQL Server

Always Encrypted [1] and Alibaba Cloud Operon [63].

Limitations still exist for the above two approaches. First, TEE-

based solutions require the end users to fully trust the TEE hardware

provider, and suffer from numerous side-channel attacks [45, 60].

Cryptographic solutions, although based on rigorous mathematical

proofs, they suffer from query expressiveness limitations, i.e., typi-
cally only support queries with aggregation (e.g., SUM through PHE),
range queries (OPE/ORE), or matching (DET/SE). More importantly,

various attacks [11, 29, 34, 44] that target SE and OPE/ORE by ex-

ploring information leakage (e.g., access pattern) apply.
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Fully homomorphic encryption, known as the holy grail of cryp-

tography, enables an unlimited number of additions and multipli-

cations over the ciphertexts. The security of FHE does not rely on

any hardware assumption, and is also fully oblivious and thus does

not leak any access pattern. Further, from a theoretical perspec-

tive, FHE is Turing complete. This gives hope to constructing a

DBMS that solely over FHE that can achieve various operations

(e.g., aggregation, equality and range queries) that used to rely on

the combination of multiple cryptographic primitives (e.g., the ap-
proach of CryptDB). Since the foundational work by Gentry [26],

over the past decade, a series of works emerged in the direction

of primitive improvement [9, 15, 16, 23, 27], hardware accelera-

tion [24, 38, 54], and particularly, its applicability in cloud-based

machine/deep learning [41, 53]. However, to the best of our knowl-

edge, FHE has not been extensively explored in the encrypted data-

base domain due to the challenge of translating SQL queries into

FHE-compatible operators and designing database-orient solutions

that fully leverage the potential of FHE.

In this work, we utilize FHE to support database aggregation

queries with filtering predicates. Such queries, e.g. TPC-H Query

1, typically involves one or more aggregation operators (e.g., SUM,
COUNT), and several filtering predicates. These computations are,

theoretically, additions and comparisons that most FHE schemes

support. However, using FHE naïvely, with no client-server interac-

tion and with a high security level against leakage attacks induces

a significant amount of computational overheads. The challenges

come from three aspects:

SQL and FHE compatibility: aggregation query first filters out

non-satisfying rows and then aggregates those remaining values.

However, FHE computations are oblivious, where the encrypted

filtering results can not be decrypted by the server. These encrypted

results have to propagate homomorphically according to the logical

operators appeared in the query, and further with the aggregation

attribute values to obtain the correct aggregation result;

Supporting unbounded aggregation queries: Users tend to is-

sue analytical queries in various complexity according to different

business needs, and thus prefer a system setup that is independent
of the query that might be issued. How to utilize FHE to support

such functionality has not yet been extensively explored;

Selecting the correct FHE schemes to improve SQL efficiency:
FHE is notorious for its complicated mathematical structure and

security parameter setting. A preferred FHE-based query analytical

system should hide this complicacy from the end user, and build the

system with multiple FHE schemes catered for different scenarios

to enjoy the maximized efficiency.

To address the above challenges, we propose a system called

HEDA∗
, which could filter out the non-satisfying predicates in an

oblivious way by multiplying the filtering results with the aggrega-

tion attribute blindly. Further, depending on the data and operation

type, this work employs the TFHE [16] scheme to address encrypted

binary operations, and the BFV [23] scheme for arithmetic opera-

tions. We leverage packed encryption in both approaches to encrypt

a batch of plaintext into a single ciphertext, which improves the

overall processing efficiency. Our main contributions are as follows:

∗HEDA stands for Homomorphically Encrypted Database Analytics

• We comprehensively study the applicability of FHE to en-

crypted database domain. In particular, we thoroughly in-

vestigate and propose the translation mechanism of various

SQL operators into FHE-compatible operations (Sec. 4);

• Our proposed solution supports aggregation queries with

an unbounded number of filtering predicates. In a conven-

tional leveled homomorphic encryption scheme, the en-

cryption parameters depend on the query complexity, and

the entire database needs to be re-encrypted if a new query

involves more complicated computation. In contrast, the pa-

rameter setting in our scheme is query independent (Sec. 5);
• To support the aggregation queries (i.e., filtering followed by

aggregation operations) only through FHE, we propose a se-

ries of novel cryptographic techniques, seamlessly integrate

the FHE schemes that handle binary and arithmetic opera-

tions, such that complicated SQL queries can be processed

smoothly (Sec. 5). This mechanism is also of independent

interest to the FHE research community;

• We conduct comprehensive experiments using real business

data and TPC-H queries to validate our system, and demon-

strate the feasibility of using FHE schemes to encrypt and

process analytical queries (Sec. 6).

2 RELATEDWORK
2.1 Homomorphic Encryption
Homomorphic encryption (HE) allows one to perform data ma-

nipulation over encrypted data. HE is a powerful tool for data

privacy protection while accomplishing computational tasks. Break-

ing down to more fundamental operations, typically an HE scheme

supports addition and/or multiplication. A partially homomorphic

encryption (PHE) scheme supports only one operation, such as

plaintext addition (e.g., Paillier [46]) or multiplication (e.g., RSA [55],

ElGamal [21]). Somewhat homomorphic encryption (SWHE) and

leveled homomorphic encryption (LHE) support both operations,

but one could only perform a pre-defined, limited number of multi-

plications (though the number of the addition operation is unlim-

ited). Since the seminal work [26], many FHE schemes that support

a polynomial or an unlimited number of both operations have

been proposed [9, 15, 16, 23, 27]. In addition, homomorphic con-

version algorithms among such schemes are also proposed [8, 41].

Open-source libraries, such as IBM HElib [33], Microsoft SEAL [57],

HEAAN [32], TFHE [16], and Palisade [47] are also available with

some of the above cryptosystems implemented, with different real-

izations and optimization.

2.2 Cryptography-based Encrypted DBMS
Over the years, the advance in cryptography improved the effi-

ciency and functionalities of the encrypted DBMS. Schemes pro-

posed include using PHE [46], SE [12, 19] and OPE/ORE [7, 14].

A streamline of encrypted database research that employs these

primitives emerge, following the pioneering work [30].

In [25], the authors propose to use the Paillier PHE scheme [46]

and an OPE system to address the encrypted addition and filter-

ing task in a query, with a packed plaintext concept. However,

PHE greatly limits the query expressive, and many other opera-

tions could not be processed under the packed plaintext scenario.
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CryptDB [51] and the subsequent MONOMI [59] employ DET, OPE,

and Paillier to enable a much richer query set. However, by using

the less secure cryptographic primitives, both schemes leak a non-

trivial amount of plaintext information. To address this limitation,

Arx [49] encrypts a DBMS with either AES, DET, or SE that is se-

mantically secure. Nevertheless, when a query requires plaintext

matching, Arx still leaks the search pattern or histogram count of

that particular operation. Seabed [48], and subsequently [56] in-

spired by Seabed, proposed symmetrical versions of the additive and

multiplicative PHE schemes. Despite both schemes using DET and

OPE for equality and range operations that inherit the limitation

of leaking plaintext information, the proposed PHE schemes have

a ciphertext size that grows w.r.t the number of items being aggre-

gated, which could be a problem in a real-life scenario where tens of

millions of data need to be processed. A recent work, SAGMA [31],

utilizes an SWHE and an SE scheme to handle aggregation queries

with multiple filtering attributes. Apart from using SE that might

potentially leak the search pattern for filtering conditions, the use

of underlying SWHE that supports only one multiplication result

on the server-side has to store an exponentially-growing set of

monomials used for assisting the aggregation of multiple attributes.

We also note an unpublished work [39], which has a similar concept

to ours by utilizing LHE to address aggregated queries. The main

difference is that the complexity of [39] is query dependent, i.e., the
client has to fix the encryption parameters a priori based on the

to-be-issued query itself, and the system could not process (future)

queries that are more complicated: the client has to decrypt and

re-encrypt the entire database should such a need arises. On the

contrary, HEDA is query independent, and supports an unbounded

number of filtering predicates and thus more complex queries.

Works such as Cheetah [53] and F1 [24], focusmore on FHE accel-

eration and optimization, and using queries like equality test or de-

ployed with a K-V store to show its applicability. Works like [36, 58]

discuss the conjunctive queries with comparison, but do not involve

aggregation, and only stay as theoretical research. To address join-

aggregate queries with multiple users, solutions based on secure

multi-party computation (MPC) have been proposed over recent

years (e.g., SMCQL [5], Conclave [62], Secure Yannakakis [64], Se-

crecy [40] and Senate [50]). We note that HEDA is both orthogonal

and complementary to MPC approaches: FHE can be used when a

single participating party (e.g., the client) is in the hold of all of the

private information, and wishes to outsource some computations to

another party (e.g., the CSP), while the execution of MPC requires

that none of the participating parties can recover all the secret data

(e.g., additive secret sharing). Essentially, FHE and MPC focus on

different scenarios. Hence, in this work, we focus on the use of FHE

in designing secure protocol for outsourcing DBMS, and consider

MPC-based DBMS schemes to be out of the scope of this work.

2.3 TEE-based Encrypted DBMS
There is another line of research, exploring the security brought by

the TEE, to build an encrypted database and process the queries.

Earlier attempts such as TrustedDB [4] and Cipherbase [2] ex-

plore the TEE with connection on PCI-X or PCIe. With more en-

clave resources, Haven [6] and EdgelessDB [28] employ TEE di-

rectly, instead of earlier works that use PCIe-connected TEE with

Table 1: Summary of Notations

Notation Description

𝑛 The lattice dimension of the LWE/RLWE/RGSW ciphertexts

𝑞 The ciphertext modulus

𝑝, 𝑡 The plaintext moduli, where 𝑡 ≤ 𝑝

Z𝑞 The ring of integers modulo 𝑞

Z𝑛𝑞 The set of n-dimensional vectors over Z𝑞
Z[𝑥 ] The polynomial ring over Z
1[𝑥 ] The polynomial whose coefficients are all 1’s

𝑅𝑛,𝑞 The cyclotomic ring Z𝑞 [𝑋 ]/(𝑋𝑛 + 1)
𝑎 A single field/ring element

a A vector

𝑎𝑖 The i-th component in vector a
𝑟 The base of radix decomposition

ℓ ℓ = ⌊𝑞/𝑟 ⌋
LWE The set of LWE ciphertexts

RLWE The set of RLWE ciphertexts

RGSW The ciphertext encrypting the secret keys for LWE

E(LWE) The amount of errors contained in the LWE ciphertext

physical isolation. Subsequent systems, such as StealthDB [61], En-

claveDB [52], and notably the already-commercialized Microsoft

SQL Server Always Encrypted [1] and Alibaba Cloud Operon [63],

provide a much richer set of DBMS functionalities and security

guarantees. One of the advantages of the TEE-based encrypted

DBMS is that they typically enjoy a very expressive set of queries

(usually with no, or a minor difference compared to standard, non-

encrypted SQL queries). However, the challenge is that the system

users have to fully trust the TEE service provider, i.e., Intel for SGX,
AMD for SEV. This rather strong assumption may not appeal to

users with highly sensitive data, and/or have no requirement for

query expressive but rather fixed analytical queries. The pure cryp-

tography based approach provides them with such an alternative.

3 CRYPTOGRAPHIC PRELIMINARY
This section introduces the necessary preliminaries related to learn-

ing with errors (LWE) cryptography, a fundamental tool for many

FHE schemes, together with some basic homomorphic algorithms

that serve as the foundation for HEDA.

3.1 Notations
In this work, we use 𝑛 for the lattice dimension, 𝑞 for the cipher-

text modulus, and 𝑡, 𝑝 for the plaintext modulus. Using a separate

modulus for filtering (𝑡 ) from aggregation (𝑝) allows more compact

database/query encryption and more lightweight filtering. Z𝑞 de-

notes the set of integers modulo 𝑞. 𝑅𝑞 depicts quotient ring modulo

𝑞 and an irreducible polynomial, generally taken to be the 2𝑛-th

cyclotomic polynomial. We use normal lower-case letter for ring or

field elements (e.g., 𝑎 ∈ 𝑅𝑞), and bold lower-case letter for vectors

(e.g., a ∈ Z𝑛𝑞 ). 1[𝑥] denotes the polynomial

∑𝑛−1
𝑖=0 𝑥

𝑖
, i.e., an order-𝑛

polynomial whose coefficients are all 1’s. A brief summary of the

frequently used variables is provided in Table 1.

3.2 Ciphertext Formats
HEDA employs three encryption methods, namely the ring LWE

(RLWE), LWE, and ring GSW (RGSW). Plaintext needs be encrypted

to the format required by the specific encryption schemes. Fig. 1

shows an example of the multiplexer whose inputs are encrypted as

LWEs while the select signal is encrypted as an RGSW. More pre-

cisely, RLWE is used for encrypting a batch of plaintexts, grouped
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in vectorized format for a single-instruction multiple-data (SIMD)

process, while LWE is used to encrypt a single plaintext value. We

also transform ciphertexts between RLWE and LWE format during

different processing stages, as detailed in Sec. 5. RGSW is used for

encrypting the FHE private key for the bootstrapping, a step to

reduce the propagated error during homomorphic computation.

1
0

1

1
0 0

(a) A plain multiplexer

LWE1

RGSW1

1
0

LWE0
LWE0

(b) An encrypted multiplexer

Figure 1: The multiplexers for plain data and encrypted data.

• RLWE: We use RLWEv,Z𝑝 and [v]Z𝑝 interchangeably to denote

an RLWE ciphertext encrypting the vector v with a plaintext

space Z𝑝 . Note that, by default, an RLWE encrypts a vector of

plaintexts in a SIMD manner. In the symmetric-key version of

the cryptosystem, the ciphertext is of the form

RLWEv,Z𝑝 = (a, b) = (a, a ∗ s + v + e), (1)

where a ∈ Z𝑛𝑞 is an 𝑛-dimensional vector that is uniformly ran-

domly distributed over Z𝑞 for some ciphertext modulus 𝑞 ∈ Z,
s ∈ Z𝑛𝑞 is the secret vector, ∗ is the nega-cyclic convolution oper-
ator, v ∈ Z𝑛𝑝 is the plaintext vector for some plaintext modulus

𝑝 ≤ 𝑞 ∈ Z, and e ∈ Z𝑛𝑞 is some error vector. Eq. (1) is known

as an RLWE ciphertext with the coefficient representation. Let

b = [𝑏0𝑏1 · · ·𝑏𝑛−1]. For RLWE ciphertexts, b represents the

coefficients of some polynomial 𝑏, where

𝑏 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + · · · + 𝑏𝑛−1𝑥𝑛−1 (2)

=

𝑛−1∑︁
𝑖=0

((a ∗ s)𝑖 + 𝑣𝑖 + 𝑒𝑖 ) · 𝑥𝑖 . (3)

In other words, every coefficient of the polynomial 𝑏 contains

encryption of the corresponding plaintext value 𝑣𝑖 ∈ v.
• LWE: We use LWE𝑣,Z𝑝 ∈ Z𝑛+1𝑞 for an LWE ciphertext encrypt-

ing an integer 𝑣 with plaintext space Z𝑝 . An LWE ciphertext

has the form

LWE𝑣,Z𝑝 = (a, 𝑏) = (a, a · s + 𝑣 + 𝑒), (4)

where a and s are the same as in an RLWE ciphertext, · is the
inner product operator, 𝑣 ∈ Z𝑝 is the plaintext integer, and

𝑒 ∈ Z𝑞 is an error integer.

• RGSW: We use RGSW𝑠𝑖 to specify an RGSW ciphertext en-

crypting one integer 𝑠𝑖 . We use s to denote the plaintext vector

of RGSW as it is only used to encrypt secret keys 𝑠𝑖 ∈ s for
𝑖 ∈ |s|. Let 𝐺−1

be the decomposition function as used in [16],

and Zℓ𝑛𝑝 ∋ 𝔰𝔦 = 𝐺−1 (𝑠𝑖 ) where ℓ is some small integer (e.g.,
three or four), an RGSW is composed of the following terms:

RGSW𝑠𝑖 = (𝔞, b) = (a + 𝔰𝔦 | |0, a⊡ r + e + 0| |𝔰𝔦) (5)

where a ∈ Z2ℓ𝑛𝑞 is a uniformly random matrix, r ∈ Zℓ𝑛𝑞 is some

secret vector, | | is the concatenation operator, ⊡ is a constant

multiplication operator acting over the module of polynomials

Algorithm 1 Homomorphic Gate

Require: 𝑐𝑎, 𝑐𝑏 : the input LWE ciphertexts, IKSK: the identity key
switching key, BK: the bootstrapping key.

Require: scale, offset: parameters to realize specific homomorphic

gates.

Ensure: 𝑐𝑦 : the output LWE ciphertext.

1: 𝑐
add

= scale · (𝑐𝑎 + 𝑐𝑏 ) + (0, offset)
2: 𝑐rot = BlindRotate(𝑐

add
,BK,RLWE

1/8,Z𝑝 )
3: 𝑐𝑦 = SampleExtract(𝑐rot, 0)

(e.g., when 𝑎 = [a0 a1], 𝑎 ⊡ r = [a0 ∗ r a1 ∗ r] is still a vector of
dimension 2ℓ𝑛, and ∗ is the nega-cyclic convolution operator),

𝔰𝔦 ∈ Zℓ𝑛𝑝 is the decomposed plaintext vector, 0 ∈ Zℓ𝑛𝑞 is a vector

of zeroes, and e ∈ Z2ℓ𝑛𝑞 is the error vector. Visually, 𝐶𝑠𝑖 can be

represented by the following equation.

RGSWs =

(
a0 + 𝔰𝔦 a0 ⊡ r + e0
a1 a1 ⊡ r + 𝔰𝔦 + e1

)
(6)

where a = a0 | |a1 and e = e0 | |e1.
All ciphertexts in LWE cryptosystems contain some level of errors

in the ciphertext for security reasons. When homomorphic opera-

tions are applied over such ciphertexts, the sizes of errors will be

amplified, until a point where the ciphertexts become no longer

decryptable. We use E(·) to denote the size of the error contained

in a ciphertext. For example, for the RLWE ciphertext [v] in Eq. (1),

E([v]) = | |e| |2 is the 𝐿2 norm of the error vector e in [v].

3.3 Unbounded Circuit Evaluation over FHE
The two mainstream modes of evaluating circuits over HE are LHE

and FHE. In LHE, circuits are with a prescribed level of depth, de-

pending on the complexity of the computation (e.g., the complexity

of the SQL, number of filtering predicates, etc.). Any further circuit

evaluation exceeding the prescribed depth will result in incorrect re-

sults. Meanwhile, FHE permits unbounded-depth circuit evaluation,

and is more suitable for allowing flexible query statements.

Unfortunately, errors (e.g., 𝑒 , e) exist in all of the ciphertext types

we use in this work, and homomorphic evaluations over complex

SQL queries increase the amount of errors in the ciphertext. Con-

sequently, FHE requires frequent invocations of the bootstrapping

procedure to reduce the amount of errors accumulated in the ci-

phertexts, and bootstrapping is known to be comparatively slow in

the BGV and CKKS schemes [9, 15] (in the order of minutes [20]).

Subsequently, FHEW [20] and TFHE [16] are proposed to dramat-

ically reduce the latency of bootstrapping at the cost of reduced

functionality. In short, FHE schemes based on TFHE permit an

unbounded number of evaluations of only simple logic gates (e.g.,
NAND gate). In particular, Alg. 1, Alg. 2 and Alg. 3 are the three

key operations in evaluating a homomorphic gate.

Here, Alg. 1 is the overall procedure that can evaluate arbitrary

homomorphic gates over encrypted inputs. Within Alg. 1, the core

operation is Alg. 2, i.e., BlindRotate, which is also referred to as the

bootstrapping operation. Here,BlindRotate is applied to some input

LWE ciphertext for two main purposes: to extract the result of the

function evaluation (e.g., the homomorphic logic gate function in
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Algorithm 2 Blind Rotate/Bootstrapping

Require: 𝑐in: the input LWE = (ain, 𝑏in) ciphertext, BK: the boot-
strapping key, 𝑇𝑉 : the input RLWE ciphertext.

Ensure: 𝑐rot: the output RLWE ciphertext encrypting

𝑥 ⌊ (2𝑛/𝑞) (𝑏−a·s) ⌋ ·𝑇𝑉
1: Let 𝜌 = 2𝑛/𝑞
2: 𝑐rot = 𝑥

−⌊𝜌 ·𝑏in ⌋ · (0,𝑇𝑉 )
3: for 𝑖 = 0 to 𝑛 − 1 do
4: 𝑐rot = Decomposition

(
(𝑥 ⌈𝜌 ·ain ⌋ · 𝑐rot) − 𝑐rot

)
· 𝐵𝐾𝑖 + 𝑐rot

Alg. 1), and to refresh the error in the input LWE ciphertext. As illus-

trated on Line 4 in Alg. 2, the essential component of BlindRotate
is Decomposition, which decomposes an input RLWE ciphertext in

Z𝑛𝑞 into another RLWE ciphertext with smaller elements in Z2ℓ𝑛𝑟 ,

where 𝑟 < 𝑞. Alg. 3 is also known as the radix decomposition, as

the algorithm decomposes every element of the ciphertext 𝑐in into

ℓ many 𝑟 -radix integers. Unfortunately, as discussed in Sec. 5.4, the

bootstrapping and decomposition procedures can only be applied

to small-parameter LWE ciphertext, i.e., 𝑛 ≈ 1024 and log
2
𝑞 ≤ 64.

When the size of ciphertexts becomes larger (larger than 64-bit),

the residual number system (RNS) technique needs to be applied,

where a large integer 𝑎 is decomposed into a set of smaller integers

(𝑎0 mod 𝑞0, 𝑎1 mod 𝑞1, · · · , 𝑎𝑙 mod 𝑞𝑙 ).

4 SYSTEM OVERVIEW
This section first provides an intuitive example to illustrate how

FHE could be used for SQL aggregation queries (Sec. 4.1), followed

by describing the overall HEDA workflow (Sec. 4.2). This section

further explains how different FHE primitives are used to implement

SQL operators to give maximized performance (Sec. 4.3).

4.1 An Intuitive Example
Consider the query as in Listing 1 over the company employee

table emp as shown in Table 2. The table contains five columns:

employee ID, monthly salary, join date, affiliated department and

vaccination status. We consider all but the ID column as sensitive

fields and need to be encrypted for illustration purposes. The query

calculates the total salary for employees who earn between 5000
to 6000 monthly and joined the company before 1st May 2022.

SELECT SUM(salary) FROM emp

WHERE salary BETWEEN 5000 AND 6000

AND joindate < date '2021 -05 -01' + interval 1 year;

Listing 1: Salary SUM Query (Query S)

Table 2: Employee Table emp

ID salary joindate dept vacstatus

249111 5693.5 2022-04-01 IT TRUE

250123 6354.7 2022-04-14 Sales TRUE

287635 5120.6 2022-05-02 Admin FALSE

234754 5800.5 2022-02-17 IT TRUE

The SQL in Query S contains three comparisons and one ag-

gregation. Two comparisons come from the BETWEEN operator, i.e.,
the ≥ and ≤ arithmetic operator, and one comparison from the

joindate predicate (we ignore the + for the date condition, to be

Algorithm 3 Decomposition

Require: cin: the input RLWE ciphertext in Z2×𝑛

Ensure: c
dec

: the output decomposed ciphertext in Z2×2ℓ𝑛𝑞

1: Let 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑘 = [ 1

2𝑟𝑘
· · · 1

2𝑟𝑘
] ∈ Z𝑛

2: Let 𝑜 𝑓 𝑓 𝑠𝑒𝑡acc = 𝑜 𝑓 𝑓 𝑠𝑒𝑡ℓ
3: for 𝑖 = 0 to ℓ − 1 do
4: 𝑜 𝑓 𝑓 𝑠𝑒𝑡acc = 𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑖
5: Let cot = (aot, bot) = cin
6: cot = cot + (𝑜 𝑓 𝑓 𝑠𝑒𝑡acc, 𝑜 𝑓 𝑓 𝑠𝑒𝑡acc)
7: for 𝑖 = 0 to ℓ − 1 do
8: c

dec,𝑖 = (⌈𝑟 𝑖 · aot⌋ mod 𝑟 ) − 𝑟
2
· 1[𝑥]

9: c
dec,𝑖+ℓ = (⌈𝑟 𝑖 · bot⌋ mod 𝑟 ) − 𝑟

2
· 1[𝑥]

explained in Sec. 4.2). The aggregation operator SUM is basically

a finite number of additions. FHE could support these operations

natively. The challenge is that, the FHE comparison produces en-
crypted results (i.e., encrypted 0/1 bits), which the server could not

decrypt, and thus could not further filter the non-satisfying rows

as in the traditional database. However, the subtle point is, if these

encrypted filtering results are multiplied by the corresponding val-

ues in the aggregation attribute, then the attribute value of those

non-satisfying rows will become zero and implicitly be filtered out

during the final aggregation.

Fig. 2 illustrates this process.We use [] to denote FHE encryption,
⊗ and ⊕ for FHE multiplication and addition, respectively. In the

first step, the system executes independently over each filtering

predicate and obtains encrypted 0/1 bits, followed by the FHE AND
operation for all three encrypted comparison result column vectors

(FHE AND is used as the SQL itself is a conjunctive query;OR could

be handled similarly if exists). In the second step, by multiplying the

combined encrypted filtering results with the aggregation attribute,

it implicitly filters the non-satisfying row 2 and 3, and this won’t

affect the final aggregation results during the FHE addition process.

salary joindate

[5693.5] [2022-04-01]

[6354.7] [2022-04-14]

[5120.6] [2022-05-02]

[5800.5] [2022-02-17]

salary 

>=[5000]

salary 

<=[6000]

joindate 

<[20220501]

[1] [1] [1] [1]

[0] [1] [0] [1]

[0] [1] [1] [0]

[1] [1] [1] [1]

FHE comparison
& logical ops

FHE multiplication

[5693.5]⊗ [1] = [5693.5]

[6354.7]⊗ [0] = [0]

[5120.6]⊗ [0] = [0]

[5800.5] ⊗ [1] = [5800.5]

FHE addition

WHERE

Clause

[5693.5]

⊕ [0]

⊕ [0]

⊕ [5800.5]

=  [11494]

Figure 2: Illustration of the implicit filtering process.
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4.2 HEDAWorkflow
HEDA assumes a client-server model, and Fig. 3 illustrates the

overall workflow. The client side is equipped with a client SDK,

to handle Data Preparation, Query Preparation, and Result
Processing phases. The server side, usually the CSP, stores the

encrypted client data, as well as processes the client query through

the HEDA Engine, and return the encrypted result to the client.

HEDA does not require the user to pre- or post-process any of the

input/output data and the query itself (as shown on the left most

side of Fig. 3, the input, output and query are as per normal database

usage), but rather handled by the client SDK entirely.

4.2.1 Data Preparation. The client SDK first needs to pre-process

the user data, including scaling up the attribute values that were

originally in float/double format to integer tomeet the FHE plaintext

space requirement. It also needs to convert other data types such as

date or categorical values into integer format
∗
( 1 ). For categorical

values, the client side needs to maintain a string-to-integer mapping

for later query issuance. Specifically, for categorical values with a

binary domain, they are encoded into either 0 or 1. The client SDK

then uses different FHE encryption schemes to encrypt integer and

binary values (explained in Sec. 4.3) as in Step 2 , and uploads the

encrypted values to CSP ( 3 ).

4.2.2 Query Preparation. To issue an aggregation query, the client

SDK needs to, as shown in Step 4 :

• value scale up and data type change;

• convert SQL operator into arithmetic operators (e.g., BETWEEN
to ≥ and ≤);

• pre-compute the trivial operations

followed by encrypting the sensitive fields with respective FHE

encryption schemes according to the converted data type ( 5 ).

4.2.3 Query Processing. By receiving the user query, the HEDA
engine, at a high level, performs the steps described in the previ-

ous Sec. 4.1, and outputs the encrypted aggregation query result

( 6 ). However, cryptographic design and optimization need careful

treatment. We defer the detailed explanation to Sec. 5.

4.2.4 Result Processing. With the received encrypted aggregation

results, the client SDK decrypts using the secret key to obtain the

scaled plaintext result ( 7 ), followed by dividing the scaling factor

and return the true result ( 8 ).

4.3 SQL Operator Support
4.3.1 Basic Operators. Through the above example, to complete

the aggregation task, three high-level steps are needed: compari-
son,multiplication (to implicitly filter the rows), and addition.
The latter two steps are relatively straightforward, FHE schemes

such as BFV would be sufficient and efficient. For the compari-

son step, it would be the most computationally intensive step and

deserve a closer look. By choosing different FHE schemes, the com-

parison step would have a vast efficiency difference.

There are two perspectives to consider for comparison: the data
type and comparison operator. We categorize them into binary

∗
For date/time data type, UNIX time represents the data as a 32-bit integer, and easily

supports various computations. For illustration, we use the YYYYMMDD format here.

equality, numerical inequality, and numerical equality. Note
that binary inequality is meaningless and do not discuss it further.

binary equality: the binary comparison could be a common filter-

ing predicate in an aggregation query (e.g., read_status = 1/0 or
vaccinated_status = TRUE/FALSE). FHE schemes such as BFV

that are typically tailored for numerical value encryption could

still handle binary values, but would be much less efficient as it

requires a very large and deep comparison circuit. Instead, HEDA
uses TFHE, an FHE scheme specially designed to process binary

operations, to encrypt and compare binary values.

numerical inequality: the BFV scheme is used to encrypt and

compare numerical values. To compare, e.g., if 𝑎 ≥ 𝑏, the system

computes 𝑎 − 𝑏 and homomorphically extracts the most significant

bit (MSB) from the subtraction result: an encrypted 0 indicates true

and 1 otherwise (i.e., 𝑎 < 𝑏). For comparison operator > (e.g., if
𝑎 > 𝑏),HEDA inverts the operands and compare instead if𝑏 < 𝑎 (i.e.,
extract the MSB of 𝑏 − 𝑎), and the same applies to the ≤ operator.

numerical equality: with the FHE support to numerical inequality

operator, to check if 𝑎 = 𝑏, it is equivalent to check if 𝑎 ≥ 𝑏 AND
𝑎 ≤ 𝑏, i.e., to extract the MSB from both ≥ and ≤ comparison results,

and feed the two MSBs into a homomorphic AND operation.
We further explain in detail how the above comparison operators

are achieved using FHE schemes in Sec. 5.3.2.

4.3.2 COUNT for packed encryption. Dummy rows need to be intro-

duced to form an RLWE ciphertext to fit the FHE parameter. Unlike

traditional ways of padding a unique string/value that is out of the

attribute domain, the FHE plaintext domain only permits integer or

binary values. One way is to pad all zero-value rows, however, this

padding approach may cause an inaccurate result. Take the same

Table 2 example with a query that counts the number of employees

who join before a specific date. As the dummy joindate are padded
with 0 and thus satisfy the condition trivially, this will cause an

inaccurate COUNT result. Note that, however, this would not affect

queries with SUM operator: although some of the dummy rows may

be wrongly included (i.e., with encrypted 1 as filtering result), when

multiplying with the to be aggregated dummy value, e.g., salary
(zero-valued padded), the result would be an encrypted 0 and thus

not affecting the total sum.

To address this issue, during initial encryption each row is as-

sociated with an encrypted 0/1 tag: 0 for dummy and 1 for real

data rows. When the execution of filtering predicates completes

with the aggregated filtering result, the protocol requires an addi-

tional homomorphic AND operation between the filtering result

and the encrypted row tag. This would implicitly remove those

dummy rows, and the COUNT is calculated (i.e., FHE addition) over

this further filtered result.

4.3.3 GROUP BY. A straightforward way is to segregate the original

query into several SQLs, each with additional equality compari-

son predicates. For example, in TPC-H Query 1, given returnflag
= {A,N,R} and linestatus = {O,F}, the original SQL could be

segregated into six SQLs without GROUP BY, each with two ad-

ditional predicates, such as returnflag = A AND linestatus
= O. However, this extension results in exponential complexity

w.r.t the number of GROUP BY attributes and also their domain

sizes. It quickly becomes impractical if the domain size is large.

For GROUP BY condition with computation involved, e.g., GROUP BY
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SELECT SUM(salary) FROM emp
WHERE salary BETWEEN 5000 AND 6000 
AND joindate < date ‘2021-05-01’ 

+ interval ‘1’ year;

Client SDK Cloud Service Provider

SELECT SUM(salary) FROM emp
WHERE salary >= 50000 AND salary <= 60000 
AND joindate < 20220501;

ID salary joindate dept vacstatus

249111 5693.5 2022-04-01 IT TRUE

ID salary joindate dept vacstatus

249111 ‘\x76AS’ ‘\xS75C’ ‘\x293X’ ‘\x20DH’

ID salary joindate dept vacstatus

249111 56935 (INT) 20220401 (INT) 3 (INT) 1 (BINARY)

ID salary joindate dept vacstatus

249111 ‘\x76AS’ ‘\xS75C’ ‘\x293X’ ‘\x20DH’

250123 ‘\x2S8H’ ‘\xFY72’ ‘\xK5S8’ ‘\x29OP’

287635 ‘\xFG56’ ‘\x93JS’ ‘\x2J6G’ ‘\x02S6’

234754 ‘\x9G62’ ‘\x3YGJ’ ‘\x8GTE’ ‘\xDF7H’

HEDA Engine

‘\x3HD7’

SELECT SUM(salary) FROM emp
WHERE salary >= ‘\xA85X’ 
AND salary <= ‘\x7PD3’ 
AND joindate < ‘\x311C’;

‘\x3HD7’11494011494

encrypted

plaintext

2

1

3

4

5

6

6

6

78

Client Input & Output

Client Data

Client Query

Received Result

Figure 3: Illustration of the HEDA system flow.

(1+taxrate)*orderprice, theoretically, the server side could com-

pute the condition blindly, followed by the same approach as above

to process the query, but inherently this will incur extremely large

overhead. To efficiently support unbounded GROUP BY condition

using FHE is an important open question.

4.3.4 Other operators. Apart from the above-mentioned opera-

tors, other SQL operators such as IN, BETWEEN, EXIST, ANY, ALL are

in principle supported by FHE, as they could be translated into

comparison operation. LIKE and wildcards are difficult to support

straightforwardly, as it focuses on string matching and may require

complex string-to-integer encoding. For basic arithmetic operators,

division and modulus are not or difficult to be supported as this is

still an active research area in FHE, while bit-wise operators are

supported straightforwardly.

5 CRYPTOGRAPHIC OPTIMIZATIONS
5.1 Formalizing the Threat Model
In this work, we adopt the classic threat model for generating

secure queries over an outsourced database using FHE [31]. Here,

we assume that client C encrypts and outsources the database D
to the server S. Since S does not possess any private information,

the only possible attack occurs when S tries to learn as much

information as possible from the data outsourced from C. Following
typical privacy-preserving protocols over FHE, we assume that S
is a semi-honest adversary. In other words, while S tries to learn as

much as possible from the data provided by C, S honestly follows

the prescribed protocol as illustrated in Sec. 5.2. In what follows,

we outline the public and private data specified in our protocol

and explain the reasons for such assumptions. We use D to denote

the database, Q the query generated by the client and Attr as the
attribute (i.e., column labels) in D.

Public Data: HEDA assumes the following database information

to be public, i.e., known to the server and third-party adversaries:

• |D|𝑟 : Size of the database, i.e., the number of rows in D.

Most secure outsourcing of databases does not hide the size

of the database [31, 51].

• [D]𝑐 : Number of attributes, i.e., the number of columns in

the database (the database schema is public information).

• |Q|: The number of filtering predicates in Q.

• NumType(Attr): The numerical type of an attribute, e.g., a
binary attribute or a numerical attribute.

Private Data: Under an outsourced DBMS setting, HEDA assumes

the following properties of the database to be private, i.e., kept
secret to the server and any third-party adversaries:

• D𝑟𝑜𝑤,𝑐𝑜𝑙 : Database entry value, 𝑟𝑜𝑤 ∈ |D| and 𝑐𝑜𝑙 ∈ [D].
• Q𝑖 : The 𝑖-th filtering predicate value of Q for all 𝑖 ∈ |Q|.

We also use Attr𝑗 to refer the 𝑗-th column vector in D, i.e.,

Attr𝑗 = [D0, 𝑗 D1, 𝑗 · · · D |D𝑟 |, 𝑗 ]
𝑇

(7)

Adversary Goal and Protocol Security: As mentioned above,

the adversary S tries to learn any of the following private data:

D𝑟𝑜𝑤,𝑐𝑜𝑙 and Q𝑖 , using all information available, such as the public

data (e.g., |D|, [D]) and ciphertext information (e.g., the encrypted
ciphertexts of D𝑟𝑜𝑤,𝑐𝑜𝑙 and Q𝑖 ). As explained in Sec. 4.2, HEDA
follows a standard secure function outsourcing setup, where all

predicate values in Q and items in D are encrypted under the FHE

scheme described in Sec. 3. Therefore, the security of our protocol

could be directly reduced to the security of the FHE ciphertexts.

For an honest-but-curious server, the chosen-plaintext attack (CPA)

security of the FHE schemes could safely guarantee that the query

and database items could only be decrypted using the client’s secret

keys, and remain encrypted elsewhere. The concrete encryption

parameters could be found in Sec. 6.1.1.

5.2 Protocol Overview
Given the encrypted database and query, the server operates on

the ciphertexts following the steps shown in Fig. 4.

First, the encrypted filtering predicate values from the query

are compared with the corresponding encrypted values from the

database with the same attributes. This comparison could be bi-

nary equality (over 𝑍2) or numerical equality/inequality (over 𝑍𝑡 ),

according to the plaintext type and the comparison operator spec-

ified by the query (elaborated in Sec. 5.3.2). The parameter 𝑡 is

usually small as the plaintext space of the comparison attribute

is typically small (e.g., 32 or 64 bits). To multiply this encrypted

comparison result with the aggregation attribute which is defined

over 𝑍𝑝 (𝑝 ≫ 𝑡), HEDA needs to lift the plaintext space from

𝑍2 (or 𝑍𝑡 ) to 𝑍𝑝 . We name this novel process parameter-lifting
bootstrapping PLB (detailed in Sec. 5.4).
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Figure 4: Illustration of the involved HEDA cryptographic steps.

However, before the bootstrapping, the packed comparison re-

sults, appearing as an RLWE ciphertext, need to be unpacked into

LWE ciphertexts because bootstrapping can only be applied to indi-

vidual coefficients (each coefficient corresponds to an LWE cipher-

text) rather than the whole polynomial. This step is referred to as

RLWE-to-LWEs conversion. Correspondingly, after the bootstrap-
ping, the LWE ciphertexts are repacked into an RLWE ciphertext

for the subsequent aggregation.

The parameter-lifting bootstrapping employs similar algorithms

in TFHE, i.e., blind rotation and sample extraction [16]. Blind ro-

tation refers to a process in which the coefficients of polynomial

𝑃𝐴 are rotated by the length of [𝑙], where [𝑙] is in encrypted form.

Sample extraction refers to extracting the constant term of the

resulting polynomial. Note that, after blind rotation and sample

extraction, [𝑙] (over 𝑍2 or 𝑍𝑡 ) is converted into the 𝑙-th coefficient

of 𝑃𝐴 (over 𝑍𝑝 ), meaning that the filtering results are adapted to

the domain where aggregation will be conducted.

In the final step, the filtered rows are aggregated (elaborated

in Sec. 5.3.4). If the aggregation involves only one attribute (e.g.,
SUM(quantity) as in TPC-H Query 1), then it could be achieved

by multiplying the comparison results (within an RLWE ciphertext)

with the encrypted aggregation column (equivalent to dot-product).

However, if the aggregation involves more than one attribute (e.g.,
SUM(extendedprice*(1-discount))),HEDA needs to convert the

ciphertext from coefficient-wise to slot-wise using a linear trans-

formation (i.e., Coefficient-to-Slot) followed by slot-wise multipli-

cations and additions. More detail are presented in Sec. 5.3.4.

5.3 Packed Filtering and Ciphertext Conversion
The main reason that lattice-based FHE schemes are preferred is

their SIMD capability which could carry out the same computation

over a large number (up to the dimension of the ciphertext, 𝑛) of

plaintext slots using only one ciphertext. The SIMD method works

well for homomorphic linear functions (i.e., addition, multiplication,

and aggregation) but not for non-linear ones (e.g., numerical com-

parison
∗
and filtering). In the most recent work [41], linear tasks

∗
Note that a binary comparison is regarded as a linear function because it can be

realized using a homomorphic addition.

and non-linear tasks are divided into two groups. The SIMD tech-

nique is only applied to linear layers, while non-linear functions

are evaluated in a point-wise manner. In this work, HEDA is based

on a similar approach, adopting the three types of ciphertexts as

mentioned in Sec. 3, namely, LWE, RLWE, and RGSW.

Our main observation is that, filtering operations in database

systems are mostly composed of simple comparisons that produce

binary results. Therefore, the core idea of HEDA lies in leveraging

conversions between RLWE and LWE ciphertexts to efficiently

utilize the SIMD capability provided by the RLWE ciphertext, while

retaining the ability of applying non-linear operations over the

encrypted ciphertexts. With these techniques, HEDA is able to

support both filtering and aggregation using a unified encryption

method instead of using multiple ones. In particular, as mentioned

in Sec. 5.2, both attribute comparisons and the final aggregations

are carried out over RLWE ciphertext encrypting a pack of plaintext

values, such that queries over a large database could be evaluated

efficiently. More specifically, the cryptographic filter-aggregation

procedure consists of the following four steps: query encryption,

packed filtering, ciphertext conversion, and aggregation. In what

follows, we explain each step in detail.

5.3.1 Query Encryption. Due to the underlyingmathematical struc-

ture, a single filtering predicate value needs to be copied 𝑛 times for

the generation of one encrypted query to ensure the efficient SIMD

computations. Concretely, when encrypting a query Q with |Q|
predicates, a total of |Q| RLWE ciphertexts are generated, where

the ciphertext for each of the 𝑖-th predicate is specified as

[Q𝑖 ] = (a𝑖 , bQ𝑖
) = (a𝑖 , a𝑖 ∗ s + Copy𝑛 (Q𝑖 ) + e), (8)

where Copy𝑛 (Q𝑖 ) = [Q𝑖 Q𝑖 · · · Q𝑖 ] is a vector in Z𝑛𝑞 constructed

by duplicating the values of Q𝑖 𝑛 times.

5.3.2 Packed Filtering. Filtering aims to find the rows that meet

the predicates specified by the query generated in Sec. 5.3.1. We

expect the filtering, as well as the aggregation, to be conducted

in a SIMD manner because it is more efficient. In particular, the

filtering starts with a SIMD subtraction over an RLWE ciphertext.

However, carrying out the non-linear operation part in a numeri-

cal comparison or combining multiple filtering results cannot be
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completed over RLWE ciphertexts. Thus, we need to convert the

RLWE ciphertext into a number of LWE ciphertexts and carry out

the PLB for individual LWE ciphertexts. After the PLB, the LWE

ciphertexts are packed again for a SIMD-manner aggregation.

• Binary equality: For binary attributes, an equality compar-

ison, equivalent to an XNOR, is implemented as an addition

followed by a negation. Obviously, this step involves no non-

linear functions, and therefore runs over RLWE ciphertexts.

• Numerical inequality: For numerical predicate values in the

query (represented by an RLWE ciphertext c(𝑞) ) and database

attribute values (represented by an RLWE ciphertext c(𝑎) ) such
as AGE > 30, their inequality could be determined by subtract-

ing the c(𝑎) and c(𝑞) values, and then extract the MSB of the

resulting RLWE ciphertext (as detailed in Table 3).

Table 3: Inequality Comparison for Numerically-encoded
Query Value c(𝑞) and Attribute Values c(𝑎) .

Index SIMD operation MSB comparison result

1 c(𝑞) − c(𝑎) 0 c(𝑞) ≥ c(𝑎)

2 c(𝑞) − c(𝑎) 1 c(𝑞) < c(𝑎)

3 c(𝑎) − c(𝑞) 0 c(𝑞) ≤ c(𝑎)

4 c(𝑎) − c(𝑞) 1 c(𝑞) > c(𝑎)

• Numerical equality: Numerical equality could be obtained

by AND’ing the inequality comparison 1 and 3 in Table 3. In

other words, c(𝑞) = c(𝑎) is equivalent to c(𝑞) ≥ c(𝑎) AND
c(𝑞) ≤ c(𝑎) . This AND operation, due to its non-linear nature,

could not execute over RLWE ciphertext. Instead, the RLWE

ciphertext is unpacked into LWE ciphertexts which are then

processed as a Boolean circuit over TFHE.

• Multiple comparisons: If the query contains multiple filtering

predicates, then all comparison results need to be AND’ed. Sim-

ilar as numerical equality, the AND operations are processed

as a Boolean circuit over TFHE.

5.3.3 Ciphertext Conversion. After the homomorphic comparison,

the results are packed into one RLWE ciphertext [Q𝑖 −Attr𝑗 ]Z𝑡 ∗(Q𝑖

and Attr𝑗 correspond to the same column), which is basically the

homomorphic subtraction between the query predicate value Q𝑖

and the corresponding filtering attribute value Attr𝑗 . However, such
comparison results could not be directly fed into the aggregation

process for two main issues. First, [Q𝑖 −Attr𝑗 ]Z𝑡 works over a plain-
text modulus of Z𝑡 for some 𝑡 where 2 ≤ 𝑡 < 𝑝 , which are different

from the plaintext space Z𝑝 of the encrypted aggregation attribute,

[Attr𝑎𝑔𝑔]Z𝑝 . Hence, we need the ciphertext conversion operation to

convert the ciphertext from [Q𝑖 − Attr𝑗 ]Z𝑡 to [Q𝑖 − Attr𝑗 ]Z𝑝 , with-
out increasing the amount of errors in the ciphertext. The second

issue is that, while binary comparisons over Z2 directly produces

binary results, comparisons over Z𝑡 needs an additional MSB extrac-

tion function to actually produce this encrypted binary value. To

achieve both goals, we devised the parameter-lifting bootstrapping

technique PLB, where

LWE𝑓 (𝑣),Z𝑝 = PLB(LWE𝑣,Z𝑡 , 𝑝) (9)

The cryptographic details of PLB will be elaborated in Sec. 5.4.

∗
Here for notation simplicity, we assume 2 ≤ 𝑡 < 𝑝 , i.e., this notation includes both

the binary 𝑡 = 2 and numerical 2 < 𝑡 < 𝑝 case.

Blind Rotation
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Product

Sample 
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LWE𝑣,ℤ𝑝

RNS Mode

RNS Mode

Figure 5: A conceptual illustration of the PLB functionality.

5.3.4 Aggregation. Given the lifted comparison results (c(𝑟 ) ) and
the aggregation attribute (c(𝑔) ), aggregation could be achieved by

a simple multiplication between them. Let p(𝑟 ) and p(𝑔) be the

plaintexts (Eq. (10)) that correspond to ciphertexts c(𝑟 ) and c(𝑔) .
Multiplying p(𝑟 ) by p(𝑔) is actually a convolution with the dot-

product result located at the coefficient of the term 𝑥𝑛−1 (Eq. (11)):

p(𝑟 ) =
𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖
and p(𝑔) =

𝑛−1∑︁
𝑗=0

𝑏𝑛−1− 𝑗𝑥
𝑗

(10)

p(𝑟 ) × p(𝑔) =
𝑛−1∑︁
𝑖=0

𝑐𝑖𝑥
𝑖 , where 𝑐𝑛−1 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑏𝑖 (11)

As mentioned in Sec. 5.2, the dot-product described in Eq. (11)

only applies to the queries that only one attribute is involved in

aggregation. For aggregations that involve more than one attribute,

we need to re-encode the RLWE ciphertext as slot-wise format

(referred to as Coefficient-to-Slot in Fig. 4). In a slot-wise encoded

ciphertext, values are located in "slots" instead of coefficients, which

enables slot-wise multiplication, and then followed by summing up

the slots (achieved by the rotate-and-add in Fig. 4) [35].

5.4 Parameter-Lifting Bootstrapping
The key component in achieving the homomorphic evaluation

described in Sec. 5.2 is the operator that we refer to as parameter-

lifting bootstrapping. PLB converts a ciphertext with small plaintext

space into a larger one without increasing the level of noises. In

other words, we need to lift the filtering results that is encrypted
either inZ2 orZ𝑡 toZ𝑝 for aggregation computation that is executed

over Z𝑝 . PLBwas not known possible (to the best of our knowledge)

in current literature related FHE, including TFHE [16], BFV [23] and

CKKS [15] along with their open-source implementations such as

SEAL [57], PALISADE [47], HElib [33], Concrete [18], among others.

Therefore, we devise the theory and the concrete implementation

of PLB to make the overall protocol flow cryptographically viable.

Fig. 5 provides an illustration of the functionality of Eq. (9). Here,

the main objective of PLB is to convert an LWE ciphertext with

a plaintext 𝑣 in the plaintext space Z𝑡 to another LWE ciphertext

encrypting the plaintext 𝑓 (𝑣) over some plaintext space Z𝑝 , for
some function 𝑓 that depends on the bootstrapping technique used.

The "lifting" property of PLB comes from the fact that 𝑝 ≥ 𝑡 and

E(LWE𝑓 (𝑣),Z𝑝 ) = O(1). In other words, the input ciphertext is

converted into the output ciphertext that attains a larger plaintext

space with a constant amount of errors, permitting a number of

further homomorphic computations to be carried out efficiently.
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To achieve efficient PLB, the main challenge is to carry out radix

decomposition under RNS-represented RLWE ciphertext. Essen-

tially, as shown on Line 4 in Alg. 2, the original bootstrapping

technique in TFHE [16] adopts radix decomposition to suppress

the large noise amplification during the process of the homomor-

phic multiplication between the RLWE ciphertext 𝑐rot and the 𝑖-th

bootstrapping key (i.e., RGSW ciphertext). When the ciphertext

modulus for crot is small, e.g., less than 64-bit, radix decomposi-

tion could be directly applied to each element in crot. Nonetheless,
when 𝑞 becomes large, it needs to be split into 𝑙 different RNS mod-

uli (𝑞0, 𝑞1, · · · , 𝑞𝑙−1) to ensure that all 𝑞𝑖 satisfy that log
2
𝑞𝑖 ≤ 64.

RNS is generally applied to divide integers in ciphertexts into 64-

bit chunks such that they could be efficiently processed by 64-bit

processors. Unfortunately, the BlindRotate algorithm could not be

directly applied to RNS-represented ciphertexts because we have

multiple copies of crot, each representing a small piece of crot in a

particular RNS modulus. As a result, the product between 𝐵𝐾𝑖 and

crot on Line 4 needs to be carried out in the RNS domain, which

requires 𝐵𝐾𝑖 also to be in the RNS domain. The difficulty here is that

representing the RGSW ciphertext 𝐵𝐾𝑖 in RNS splits the internal

error within the RGSW ciphertext, and radix decomposition is not

meaningful in suppressing errors in the RNS domain.

Therefore, to ensure that the output ciphertext crot to have a

large plaintext space (and thus large ciphertext space) and small

error size, we need to switch crot from the RNS domain back to the

original radix domain and perform the homomorphic multiplication

between crot and 𝐵𝐾𝑖 . The naïve approach in tackling this method

is simply to restore crot back to the large ciphertext space over Z𝑞 .
Note that, here, 𝑞 could be up to 140-bit, and we point out that

handling such large integer over any type of hardware results in

low computational efficiency. Hence, to achieve large plaintext and

small error growth, we devise the RNS-Radix decomposition tech-

nique that directly convert RNS-decomposed ciphertext into radix-

decomposed ciphertext, without the need of handling large integers

(i.e., larger than 64-bit). Formally, let (cRadix
0

, cRadix
1

, · · · , cRadix
𝐽 −1 ) =

Radix(c) and (cRNS
0

, cRNS
1

, · · · , cRNS
𝐽 −1 ) = RNS(c) be the radix and

RNS representations of c, respectively. The proposed RNS2Radix
and Radix2RNS could be formulated as follows:

(cRadix
0

, · · · , cRadix
𝐼−1 ) = RNS2Radix(cRNS

0
, · · · , cRNS

𝐽 −1 ), (12)

where

cRadix𝑖 = ⌊
∑𝐽 −1

𝑗=0
cRNS
𝑗

· 𝑞 𝑗 mod 𝑞

𝑟 𝑖
⌋ = ⌊

∑𝐽 −1
𝑗=0

cRNS
𝑗

· 𝑞 𝑗
𝑟 𝑖

− 𝑢 𝑞
𝑟 𝑖
⌋

(13)

and 𝑢 = ⌊
∑𝐽 −1

𝑗=0
cRNS
𝑗

𝑞 𝑗
⌋ . (14)

Note that all terms in Eq. (13) are relatively small, and could be easily

handled on processors supporting 128-bit integer operation. Next,

we point out that 𝑟 ≪ 𝑞 𝑗 for all 𝑗 ∈ {0, · · · , 𝐽 − 1}, the summation

of ⌈𝐽/𝐼⌉ radix-decomposed ciphertexts still likely to lie within the

range [0, 𝑞 𝑗 ). Therefore, Radix2RNS is almost a free operation, and

requires much less computation compared to RNS2Radix.

6 EVALUATION
6.1 Experiment Setup
In this work, the setup for the evaluation of HEDA involves two

parts: the testing SQL queries and associated database relations,

and that of the corresponding FHE parameters.

6.1.1 SQLs and Relations. We test five SQLs in our experiments.

We first test Query S with synthetic data as a warm-up. The second

SQL is a simple funnel analysis query (Query F) from a real social

media e-commerce platform. Sample of the corresponding relation,

also extracted from real but de-identified dataset, is shown in Table 4.

This relation contains a purchase date, and various user activity

capturing. The actual relation contains more columns such as user

ID, blogger ID etc., we omit them here as they are not used for

the experiment and for the de-identification purpose. This query

calculates the total customer spending amount for those who have

read a particular promoting blog and followed the blogger within a

date range. It contains both binary and numerical comparisons.

SELECT SUM(amount) FROM customer

WHERE pur_date < date '2021 -04 -14'

AND read = 1 AND follow = 1;

Listing 2: Funnel Analysis Query (Query F)

Table 4: ‘customer’ Table Sample for Funnel Analysis Query

pur_date search read comment follow share amount

2021-04-01 1 1 0 1 0 23

2021-04-01 0 1 1 1 0 49

2021-03-29 0 1 0 0 0 35

2021-03-28 1 1 1 1 1 99

The other three queries are from TPC-H benchmark, Query

1, 6 and 19. For Query 1, we remove the GROUP BY, ORDER BY
operator (discussed in Sec. 7) and the AVG operator (as it could be

computed at the client side with SUM and COUNT results). For Query

19 we remove the p_partkey = l_partkey condition as it involves

multi-way join (discussed in Sec. 7). Query 6 is kept intact. We have

pre-processed the data to fit FHE encryption.

6.1.2 HE Setups. The parameters of the FHE scheme are critically

dependent on the plaintext domain of the operands in the query

(but not the query complexity) and the domain of the database

values. In particular, the required precision of the data items within

D determines the plaintext space of FHE. The plaintext space then

determines the FHE parameters including lattice dimension and

ciphertext modulus. As illustrated in Table 5, comparisons can be

carried out over either Z2 or Z𝑡 where 𝑡 can be as large as 32-bit

integers. After the SIMD comparisons, PLB lifts the plaintext space

to Z𝑝 where ⌈log
2
𝑝 = 40⌉. For small plaintext spaces, log

2
𝑞 ≈ 32

is sufficient. Meanwhile, for the larger plaintext space 𝑝 , the value

𝑞 needs to be as large as 140-bit. Such 𝑞 is split into RNS moduli,

within which each individual modulus is less than 60-bit.

6.1.3 Implementation. We implementHEDA based on theMicrosoft

Simple Encrypted Arithmetic Library (SEAL) [57], TFHEpp (a high-

performance implementation of the TFHE scheme) [42] and Open-

Pegasus (linear transformation over RLWE ciphertext) [41].We eval-

uate the benchmarks on the Intel Xeon Platinum 8163 CPU@2.5GHz.
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Table 5: Summary of the Instantiated Parameters

Ciphertext Plaintext Ciphertext RNS

Format Space Parameters Moduli

LWE & RLWE
Z2 or Z𝑡=232
Z
𝑝=240

𝑛 = 1024, ⌈log
2
𝑞⌉ = 32

𝑛 = 8192, ⌈log
2
𝑞⌉ = 140

N/A

{60, 40, 40}

RGSW Z3 𝑛 = 8192, ⌈log
2
𝑞⌉ = 140 {60, 40, 40}

Table 6: Performance of micro-benchmarks based on the
Intel Xeon Platinum 8163 CPU@2.5GHz.

Function Micro-benchmark Latency (𝑚𝑠)

Filtering

comparison over Z2/Z𝑡 1.5

RLWE-to-LWEs (8192) 404

gate bootstrapping 19

PLB blind rotation of a single LWE 9,197

sample extraction 0.048

Aggregation

packLWEs 30,574

polynomial multiplication 38

coefficient-to-slot 1,803

slot-rotation 4.4

Others

key generation 160

encryption 18

decryption 6

6.2 Micro-benchmarks
Before evaluating the database queries, we first benchmark the la-

tency of each cryptographic step inHEDA (calledmicro-benchmarks)

with results shown in Table 6. We learn from Table 6 that packLWEs

is the most time-consuming function (> 20 seconds). This is as ex-

pected because the function aims to pack 8192 LWEs into an RLWE,
executing a total number of 8191 automorphism operations [13].

Since an automorphism operation involves 24 many 8192-point

number theoretic transform (NTT) operations
∗
, the function of

packLWEs involves more than 196𝑘 many 8192-point NTTs.

Blind rotation of a single LWE is the secondmost time-consuming

operation (> 9 seconds). Even though it seems much slower than

the the TFHE scheme where blind rotation is originally proposed,

this latency is within expectation because we employ a much larger

polynomial degree (i.e., 𝑛 = 8192 vs. 𝑛 = 1024) which means not

only more computation overhead for rotating a single ciphertext

but also a larger number of polynomials need to be processed (i.e.,
RNS). To accelerate blind rotations, we introduced two major op-

timizations: lazy reductions and RLWE-scaling. In blind rotations,

multiply-accumulate operations are frequently invoked. For the

purpose of reducing the cost of modular reductions whenever a

modular multiplication and a modular addition is called, we per-

form only one modular reduction after all multiplications and addi-

tions are performed in each iteration. Meanwhile, in RNS-to-Radix

conversion, we also perform lazy reductions to avoid the costly

divisions in Eq. (14). RLWE-scaling is another optimization in the

context of TFHE scheme. In general, it split two high-degree poly-

nomials into several low-degree polynomials and reduces the total

count of computations linearly as the number of split polynomials

grows. Many other optimizations can be applied in blind rotations

∗
NTT is a generalization of the discrete Fourier transform (DFT) to finite fields. It en-

ables fast convolution on integer sequences without any round-off errors, and therefore

it is useful for multiplying large polynomials. An 8192-point NTT is used to transform

an 8192-degree polynomial and composed of 48𝑘 integer modular multiplications.

Table 7: Performance breakdown (𝑚𝑠) for the benchmark
databases with 8192 rows based on the Intel Xeon Platinum
8163 CPU@2.5GHz.

Database Filtering PLB Aggregation Others Total

Query S 1,312 (0.3%) 398,366 (92.1%) 32,414 (7.5%) 371 (0.1%) 432,463

Query F 1,274 (0.3%) 393,487 (92%) 32,981 (7.6%) 390 (0.1%) 427,565

Query 1 424 (0.1%) 394,536 (92.1%) 32,684 (7.6%) 874 (0.2%) 428,518

Query 6 2,200 (0.5%) 400,517 (92.9%) 32,472 (7.5%) 386 (0.09%) 435,613

Query 19 21,292 (4.7%) 395,792 (87.8%) 32,472 (7.2%) 1,271 (0.3%) 450,827

such as bootstrapping key unrolling and choosing well-constructed

moduli, but these optimizations are dependent on the specific input

LWE ciphertext or the customized moduli, which leads to loss of

generality. Considering that PLB involves a total number of 8192

blind rotations, PLB is approximately 8192 times slower than a

blind rotation assuming a single-thread execution. Hence, PLB is

also the performance bottleneck of HEDA.
Coefficient-to-slot is the third most time-consuming operation

(∼ 1.8 seconds). The coefficient-to-slot function aims to modify the

plaintext format within its corresponding ciphertext, which is nec-

essary when multiple attributes are involved in a single aggregation

clause (e.g., SUM(extendedprice*(1-discount))). This function
involves a linear transformation over the RLWE ciphertext. As it is

executed much less frequently (number of packed ciphertext are

much less than the total number of rows), its impact on the overall

performance is limited. All the other functions, consuming several

to several hundreds of𝑚𝑠 , are negligible w.r.t the overall latency.

6.3 DB Results
We further evaluate the SQL queries and their corresponding tables

with results shown in Fig. 7. All databases are tested starting with

8192 rows, such that the whole database can be encrypted inside a

single RLWE ciphertext, and the number of rows increased further

in subsequent experiments. According to Table 7, all SQL queries

take about 430 seconds (> 7 minutes) with 8192 rows.

Table 7 shows that the PLB is the major bottleneck for the overall

performance (∼ 92%) even with the acceleration of multi-threading.

This can be explained by the fact that the PLB involves up to 8192

bootstrappings because the RLWE ciphertext has been converted

into 8192 LWE ciphertexts during the filtering step. We adopt

several optimizations to accelerate the PLB. First, as described in

Sec. 5.4, we convert an RNS-based ciphertext into a radix-based one.

More precisely, an RNS-based ciphertext, containing three compo-

nents (corresponding to three moduli of 60-bit, 40-bit and 40-bit,

respectively, as listed in Table 5), is converted into five radix-based

components, each involving a 23-bit integer. Second, we adopt

several approaches to optimize performance of a single bootstrap-

ping, including lazy reductions and RLWE-scaling as elaborated in

Sec. 6.2. Third, the PLB is further accelerated using multi-threading.

The 8192 bootstrappings can be executed in parallel as they are

independent of each other (Sec. 5.4). The Intel Xeon Platinum 8163

CPU supports up to 192 threads. Even though it is hard to achieve

a speed-up of 192 times due to limited on-chip memory, multi-

threading still achieves a significant acceleration for the PLB.
We then show the impact of database table size on the overall

latency in Fig. 6. For all the table sizes, the latency of HEDA is near-

linearly correlated to the number of rows in the table as shown in
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Figure 6: HEDA latency vs. the database table size.
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Figure 7: HEDA storage vs. the database table size.

Fig. 6a. The near-linearity is explained by the PLB whose latency

is linear to the number of LWE ciphertexts (equal to the number

of rows). If we zoom into Query F, for example, for a closer look,

we observe an abrupt rise when the number of rows equals multi-

ples of 8192, as shown in Fig. 6b. This phenomenon is caused by

comparison and aggregation as they are based on RLWE ciphertext.

More precisely, the computation on RLWE ciphertext, due to its

SIMD nature, changes as a step function instead of a linear one.

Next, we evaluate the storage size for HEDA and compare the

results with the plaintext case, as shown in Fig. 7. The encrypted

database is about 1∼2 times larger than the plaintext. Neverthe-

less, the bootstrapping key (bsk) and evaluation key (evk), used for

evaluation over ciphertext, requires storage of 54MB and 3.9GB,

respectively. We note that the key material size is a common chal-

lenge in the FHE domain and orthogonal to our work. This size can

be hundreds of times smaller if the keys are generated on the fly

[37]. The size of these keys does not scale with the database size,

and therefore their impact is less significant for large databases.

In Table 8, we provide qualitative comparisons between our work

and existing encrypted database solutions (i.e., CryptDB [51] and

SAGMA [31]). By leveraging FHE, we can significantly simplify

the storage complexity without incurring overheads to both query

latency as well query complexity. In particular, even in the case

where the number of grouping attribute is one, the storage complex-

ity of HEDA grows exactly linearly with the number of database

elements (𝑞 and 𝛼 are constants), instead of being dependent on the

size of the query (|Q| in Table 8) as in SAGMA. Second, in terms of

security, most existing works, such as CryptDB and SAGMA, do

not protect search frequency (while SAGMA provides some levels

of empirical protections, the security cannot be formally proved). In

contrast, HEDA proposes an end-to-end FHE-based DBMS protocol,

where the security of both data items and the search frequencies are

provably secure as discussed in Sec. 5.1. Lastly, for query latency,

Table 8: Qualitative and Complexity Comparisons

Work Security Security O(Storage)
D𝑟𝑜𝑤,𝑐𝑜𝑙 Search Freq.

[51] Non-Provable Not Protected 𝛼 |D𝑐 | |D𝑟 |†
[31] Provable Leaks Bucket Freq. (𝐵★ − 1 + |Q | ) |D𝑟 | |D𝑐 |
Ours Provable Provable 𝑞 (𝛽 |D𝑟 | ) |D𝑐 | ‡
† 𝛼 is a constant

‡ 𝛽 is constant and 𝛽 ≤ 1/1024 ★ 𝐵 is the bucket size in [31]

SAGMA reports an estimated aggregation time (excluding filtering

since SAGMA uses SSE) around 40 seconds for |D𝑟 | = 8, 000 rows at

an 80-bit security level. In comparison, HEDA requires around 430

seconds for both the filtering and aggregation of |D𝑟 | = 8, 192 rows

at 128-bit security. HEDA does pay extra latency costs to protect

access pattern. However, the query latency of HEDA can always be

further reduced by parallelized hardware architecture, while the

lost of access pattern security in SAGMA cannot be easily solved.

7 DISCUSSION
MAX/MIN/ORDER BY: These operators involve FHE-based sorting

that comprises a number of comparisons and swaps. As shown in

Sec. 5.3.2, comparison (over Z𝑡 ) can be realized using a homomor-

phic subtraction, RLWE-to-LWEs conversion, and MSB extraction.

Swapping two LWE ciphertexts that correspond to two integers can

be achieved using a controlled multiplexer (CMUX, as illustrated in

Fig. 1b of [17]). The comparison result, serving as the select signal,

decides which input LWE ciphertext will be chosen and placed in

front (or behind). One important open question is to implement

and test the efficiency of such an approach.

Multi-way join: OLAP scenarios usually involve multi-table join

predicates. Although fundamentally the operation is either a binary

or numerical comparison that FHE could support, the challenge is

each predicate involves two inputs from existing relations (compare

to the TPC-H Query 1, 6 and 19 which one of the comparison

operands is provided as the user input). We are working towards

a solution that supports multi-way join without blowing up the

complexity to the Cartesian product of all the involved relations.

8 CONCLUSION
In this work, we propose an FHE-based database analytical system,

HEDA, to support SQL aggregation queries. As the first work that

utilizes only FHE to support SQL queries, HEDA allows the users to

issue aggregation queries with unbounded complexity. Further, by

combining two different FHE constructions and creatively propos-

ing the ciphertext transformation technique PLB, our system allows

the users to encrypt and process their data based on the data type,

to enjoy the benefit of both approaches without compromising

the security. Through the comprehensive experiments, we demon-

strated the feasibility of leveraging FHE to address SQL queries,

making the very first step in this domain.

Despite the foundation laid by HEDA, it is still a much unex-

plored territory of FHE-based encrypted DBMS. One immediate

urgency is to improve the efficiency to support larger database

sizes through further cryptographic optimizations. Another line

of valuable research is to widen the functionalities supported by

FHE-based systems, such as GROUP BY, ORDER BY or multi-way

join. These might be challenging and requires novel FHE techniques

to address such needs raised by the database community.
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