
Stop-and-Restart Style Execution for Long Running
Decision Support Queries

Surajit Chaudhuri Raghav Kaushik Abhijit Pol Ravi Ramamurthy
 Microsoft Research Microsoft Research University of Florida Microsoft Research

surajitc@microsoft.com skaushi@microsoft.com apol@cise.ufl.edu ravirama@microsoft.com

ABSTRACT
Long running decision support queries can be resource intensive
and often lead to resource contention in data warehousing
systems. Today, the only real option available to the DBAs when
faced with such contention is to carefully select one or more
queries and terminate them. However, the work done by such
terminated queries is entirely lost even if they were very close to
completion and these queries will need to be run in their entirety
at a later time. In this paper, we show how instead we can support
a Stop-and-Restart style query execution that can leverage
partially the work done in the initial query execution. In order to
re-execute only the remaining work of the query, a Stop-and-
Restart execution would need to save all the previous work. But
this approach would clearly incur high overheads which is
undesirable. In contrast, we present a technique that can be used
to save information selectively from the past execution so that the
overhead can be bounded. Despite saving only limited
information, our technique is able to reduce the running time of
the restarted queries substantially. We show the effectiveness of
our approach using real and benchmark data.

1. INTRODUCTION
Decision support queries can be long running. For example,
recent TPC-H [17] benchmark results show that these queries
might take even hours to execute on large datasets. When multiple
long running queries are executed concurrently, they compete for
limited resources including CPU, main memory, and workspace
area on disk used to store temporary results, sort runs and spilled
hash partitions. Contention for valuable resources can
substantially increase the execution times of the queries. It is
possible to suspend the execution threads of one or more low-
priority queries and resume them at a later time. The main
problem with this approach is that suspending the execution of a
query only releases the CPU resources; the memory and disk
resources are still retained until the query execution thread is
resumed. Thus, the only real option available today in order to
release all resources is to carefully select one or more queries
(based on criteria such as the importance of the query or the
amount of resources used by it or progress information [3][13])
and terminate them. Terminating one or more queries releases all

resources allocated to them, which can be used to complete other
queries.

In today’s database systems, the work done by such terminated
queries is entirely lost even if they were very close to completion
and these queries will need to be run in their entirety at a later
time. In this paper we show how instead we can support a Stop-
and-Restart query execution that can leverage partially the work
done in the initial query execution to reduce the execution time if
we were to restart it.

Any attempt to save and reuse all intermediate results potentially
requires very large memory and/or disk resources (for instance,
hash tables in memory, sort runs in disk, etc.) in the worst case,
amounting to significant overheads. Therefore, in this paper we
propose Stop-and-Restart query execution that is constrained to
save and reuse only a bounded number of records (intermediate
records or output records) thus releasing all other resources. Such
an approach is attractive since it limits the resources retained by a
query that has been terminated. We refer to this as the bounded
query checkpointing problem. Our solution is based on choosing a
subset of records to save during normal execution and then
skipping the corresponding records when performing a scan
during restart. We introduce a generalization of the scan operator
called skip-scan to facilitate such a restart technique. We
demonstrate that in order to obtain significant speed up, it is
necessary to carefully select the subset of records to save. The key
challenge we address is to select this set of records online as
query execution proceeds, since we have no knowledge of when
or if at all the query is going to be terminated. Our experiments
based on a prototype built by modifying Microsoft SQL Server
2005 indicate that there are many cases where bounded query
checkpointing yields significant benefits even when a relatively
small number of records are saved. Of course, we get higher
benefits when more records can be saved.

The primary target for Stop-and-Restart style execution is
decision-support queries issued in a data-warehousing
environment. We assume that the database is read only except for
a batched update window when no queries are executed. Finally,
although saving and reusing intermediate results is reminiscent of
the techniques used for dynamic query optimization [1][6][15],
the constraint of saving and reusing only a bounded number of
records is unique to our problem.

The outline of the paper is as follows. In Section 2 we review
some preliminary concepts and also present desirable properties
of Stop-and-Restart style query execution. Section 3 discusses
Stop-and-Restart execution for query plans consisting of a single
pipeline. In this section, we introduce how Stop-and-Restart query
execution can be supported in the framework of query processing
engine of relational database systems. Based on a GetNext model

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

735

of work for query execution, we also present an algorithm to
compute the set of intermediate results to save and reuse for the
case of single pipeline execution plans. In Section 4, we extend
our algorithms to work for more complex execution plans. We
present an experimental evaluation of our prototype system in
Section 5 and present discussions on important extensions in
Section 6. Section 7 presents related work and Section 8
concludes the paper.

2. PRELIMINARIES

2.1 Pipelines and Plans
The Stop-and-Restart style query execution is described around
query execution plans. A query execution plan is a tree where
nodes of the tree are physical operators. Each operator exposes a
GetNext interface and query execution proceeds in a demand
driven fashion [7]. In this paper, for ease of exposition we do not
consider parallel query execution plans.

An operator is a blocking operator if it produces no output until it
consumes at least one of its inputs completely. The Hash join is
an example of blocking operator. The probe phase cannot begin
until the entire build relation is hashed.

A pipeline is a maximal subtree of operators in an execution plan
that execute concurrently. The examples in Figure 1 illustrate
plans that execute in a single pipeline. Every pipeline has one or
more source nodes, the operator that is the source of the records
operated upon by remaining nodes in the pipeline. The Table Scan
A in Figure 1(a) and Index Scan A in Figure 1(b) are examples of
source nodes. We discuss execution plans consisting of multiple
pipelines in Section 4.

2.2 Modeling Work during Query Execution
We require a way to measure the amount of work done during
query execution. One natural candidate is the optimizer cost
model; however we require a more light-weight alternative. In
this paper we use the total number of GetNext calls measured over
all the operators to model the work done during query execution.
While a weighted aggregation of GetNext calls is more
appropriate for complex queries involving operations such as
subqueries and UDFs, we use the counts as a first step. This is
consistent with recent work on progress estimation for queries
which also employs similar schemes to model the work done
during query execution [3][13][14][4]. Our experiments in
Section 5.1 indicate that the improvement as measured by the
GetNext model is almost the same as that in execution times.

2.3 Stop-and-Restart Style Query Execution
Stop-and-Restart style query execution involves two distinct
phases – the initial run which is the first query execution until it is
terminated, and the restart run which is the re-execution of the
same query at a later time. We are allowed to save some state
during the initial run which can be utilized during the restart run.
When the query is killed, this state is saved coupled with a
modified execution plan utilizing it. During the restart run, the
modified plan (referred to as a restart plan) is executed. In this
paper, we only consider saving intermediate results generated
during the initial run. We discuss other candidates for saving such
as the internal state of operators in Section 6. Also, while our
approach can be extended to cover the case where the storage

constraint is given in terms of number of bytes, in this paper we
consider the constraint specified in terms of number of records for
simplicity.

We now discuss desirable properties of a Stop-and-Restart style
execution.

Correctness: The restart plan must be equivalent to the original
query plan.

Low Overhead: There are two forms of overhead in a Stop-and-
Restart framework. One is the monitoring overhead incurred
when the query is not terminated. Clearly, the performance in this
case should be comparable to normal query execution. Secondly,
we have the stop-response-time, which is the time taken to
terminate the query. The process of query termination must be
fast, which constrains the number of records we can save. This is
a critical design point for the viability of our approach.

Generality: A Stop-and-Restart framework should be applicable
to a wide range of query execution plans.

Efficiency of Restart: The sum of the execution time before the
query is stopped and the execution time after it is restarted should
be as close as possible to the execution time of uninterrupted
query execution. Thus, our main performance metric is how much
of the work done during the initial run can be saved during the
restart run.

3. SINGLE PIPELINE QUERY PLANS
We consider pipelines that consist of a single source node and
where the results of the pipeline are obtained by invoking the
operator tree on each source record in order and taking their
union. The pipelines in Figure 1 fall in this class – the source
nodes are shaded. Result records are generated at the root node of
the pipeline. At any point in execution, it is meaningful to talk
about the current source record being processed in the pipeline.
There are pipelines having operators such as Top, Merge-Join that
do not fall in this class; our techniques however are applicable to
such pipelines also. We extend our solution to query execution
plans consisting of multiple pipelines in Section 4.

Figure 1. Examples of a single pipeline query execution plans.

3.1 Primitives for Stop-and-Restart Execution
In this section, we outline the primitives for supporting Stop-and-
Restart execution.

Rids at the Source Node

We assume that each source record has a unique identifier rid.
This can be implemented say by adding the primary key value to
the key of a clustering index. For instance, Microsoft SQLServer
adds the primary key to any index key. Without loss of generality,
we assume that rids are numbered 1,2,3… in the order in which

(a)

Table Scan A

Filter

(b)

Index Scan A Index Seek B

Index Nested
 Loops Join

736

they are scanned. For ease of exposition, we assume a special rid
value 0 indicating the beginning of the table. We use the notation
(LB,UB) to denote all source records with rids between, but not
including LB and UB, whereas [LB,UB] also includes LB and
UB. We also assume that for any intermediate record r, we can
obtain the rid for the corresponding source record, denoted as
Source(r).

Skip-Scan Operator

The simplest stop-restart technique is to save all result records
generated during the initial run at the root of the pipeline. For
example, for the plan shown in Figure 1(a), we save all records
returned by the Filter operator. During the restart run, the goal is
to avoid re-computing these saved results. We accomplish this by
introducing the notion of skipping – we skip the corresponding
source records when scanning the source in the restart run.

We introduce a generalized version of a scan operator that can be
used to support this. It takes two rids LB < UB as an input. It
scans all records in the source node up to and including LB and
resumes the scan from the record with rid UB (included in the
scan), skipping all records in between. We refer to this primitive
as the skip-scan operator.

The skip-scan operator can be built on top of existing operators
such as Table Scan and Clustered Index Scan utilizing the random
access primitives from the storage manager. For instance, in a
Clustered Index Scan, we seek to the UB value using the key (we
assume they are unique). In the case of Heap File Scan, we
remember the page (pageid, slotid) to resume the scan from. In
general, the skip-scan operator can be extended to skip multiple
portions of the source node. In this paper, we focus on skipping a
single contiguous range.

 Figure 2. Skip-Scan Plan

Saving and Returning Records

We extend all operators with the ability to save a sequence of
records. This logic is only invoked at the root of the pipeline,
which is marked at compilation time. If and when the query is
terminated, a restart plan that uses this sequence of records is
saved where the source node is replaced with a corresponding
skip-scan operator.

Any pair of rids LB < UB (at the source node) identifies a restart
plan RPlan(LB,UB) as follows. We replace the scan of the source
node with a skip-scan seeded with LB and UB and cache the
results generated by records in the region (LB,UB) at the root of
the pipeline.

Now we explain the execution of the restart plan. Consider the
point where the skip-scan operator has returned the source record
corresponding to LB. At this point, similar to the end-of-stream
(EOS) message that a scan operator sends at termination, the skip-

scan operator sends an end-of-LB (EOLB) message before it skips
to the UB. On receiving the EOLB message the pipeline root
returns the saved records, after which it makes GetNext calls to its
child operator as usual. Figure 2 illustrates an example of a restart
plan. The Filter operator is the root of the pipeline which returns
the three saved records on receiving the EOLB message from the
skip-scan operator.

3.2 Restart Plans and Their Benefit
Instead of reasoning in terms of cost, we reason in terms of
benefit. The benefit of a restart plan is the number of GetNext
calls skipped, i.e., the difference between the number of GetNext
calls completed while executing the original plan and the restart
plan. For ease of exposition, we ignore the GetNext calls involved
in returning the results cached at the root of the pipeline of a
restart plan. However, all our results extend even if we count
these calls.

Since we cache result records at the root of the pipeline, we
search the space of restart plans by examining result records at the
root. For a window W consisting of contiguous records ri-1,…,ri+j
(j ≥ 0) at the root of the pipeline, we use the corner records ri-1 and
ri+j to derive a restart plan as follows. The set of result records
excluding the two corners, that is ri,…,ri+j-1 is called the candidate
set underlying W with size j. By setting LB = Source(r i-1) and UB
= Source(r i+j) and saving the candidate set, we obtain a candidate
restart plan.

However, the candidate restart plan is not necessarily equivalent
to the original query plan, as illustrated by the following example.
Suppose we are executing an Index Nested Loop Join between
Tables A and B as shown in Figure 3. Consider the sliding
window of three result records r0 = (1,1), r1 = (2,2) and r2 = (2,2)
shown shaded in the figure. The restart plan corresponding to this
is defined by LB = 1 and UB = 2 thus leading to no record being
skipped. The candidate set however has the single record r1 =
(2,2) which implies that this restart plan is incorrect. Such
duplication happens if and only if Source(r i-1) = Source(r i) or
Source(r i+k) = Source(r i+k-1).

 Figure 3. Example of Result Window that is not Skippable

Result windows where Source(r i-1) ≠ Source(r i) and Source(r i+k) ≠
Source(r i+k-1) are called skippable. Thus, Figure 3 illustrates an
example window that is not skippable.

The candidate restart plan corresponding to a skippable window
W is denoted as RPlan(W) and the benefit of RPlan(W) as
benefit(W).

We need an additional mechanism to handle certain corner cases.
We assume two “dummy” result records appearing at the root of
the pipeline: begin associated with the iterator’s Open call, and
end associated with the call to Close. Source(begin) is defined to

 ..

1
2
2

Table B Table A

INL Join

1,1 .. 2,2 2,2

1
2
3
4
5

Skip

Filter

LB UB

737

be 0. Source(end) is set to be the current source record being
processed at the point of termination. Consider the query plan in
Figure 1(a). Suppose that at the point of termination, no records
have been output by the filter operator. In this case, we can skip
the entire scan until this point. However, a candidate restart plan
is only defined for windows that have at least two corner records.
We need begin and end to capture such cases.

3.3 Bounded Query Checkpointing
We can use the primitives introduced above to save all result
records but this incurs unbounded overhead since the number of
results generated can be large. We control the overhead by
constraining the number of records that can be saved.

A skippable window W of result records is said to be bounded if
its candidate has size at most k. The corresponding restart plan is
also said to be bounded. In general, RPlan(LB,UB) is said to be
bounded if the number of results cached is at most k.

The bounded query checkpointing problem is the following online
problem. We are given a pipeline P and a budget of k records. At
any point in execution where the current source record being
processed has identifier id, the goal is to maintain a bounded
restart plan equivalent to P that yields the maximum benefit
among all bounded restart plans RPlan(LB,UB) with LB < UB ≤
id. This is an online problem since we do not know when the
query is going to be terminated.

Figure 4. Optimal Bounded Restart Plan.

Figure 4 illustrates an example for the query plan in Figure 1(a)
where the budget k is three. The records that satisfy the filter
predicate are marked out (other records are in the gray region).
Suppose the query is terminated after all the records shown in the
Figure are processed. The label “Best-3 Region” shows the region
that is skipped in the optimal restart plan.

There is an inherent tradeoff between the number of records we
can cache and the benefit we can obtain during restart. For a given
budget k, there are cases where the maximum benefit we can
obtain is limited, independent of the specific algorithm we use.
Consider the query select * from T that scans and returns
all records in T. Any algorithm can skip at most k records in the
scan. If k is small compared to the cardinality of T, then most of T
has to be scanned during restart.

However, in practice, there are cases where even a small value of
k can yield significant benefit provided we carefully choose
which k records to save. This holds even when the budget k is 0.
For example, in Figure 4, we can skip the region between any two

successive source records that satisfy the filter predicate. We now
discuss an experiment that illustrates this point.

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000 6000 7000 8000

i

B
en

ef
it

(r
i-

1,
 ,

ri
)

Figure 5. Benefit(ri-1, , ri) vs. i.

We choose a query over the TPC-H data that selects all rows from
the lineitem table that satisfy the predicate l_shipdate <=

‘1996-12-01’. The execution plan for this query is identical to
the plan shown in Figure 1(a). We execute this query over the
TPC-H dataset where the data distribution is skewed (refer to
Section 5 for details). Figure 5 plots the benefit of the result
window (ri-1,ri) (Y-axis) against i (this corresponds to setting the
budget to 0). We note that there is significant non-uniformity in
the graph. Most of the benefit is clustered in a range of about
2000 records between r4000 and r6000, whereas the lineitem table
has 6 million records. Now suppose that the budget k is 2000. The
benefit of saving the 2000 records between r4000 and r6000 can be
obtained by aggregating the corresponding benefits from Figure 5.
This benefit is significant and is much higher than the aggregate
corresponding to an arbitrary subset of 2000 records.

3.4 Opt-Skip Algorithm
We now present the Opt-Skip algorithm for the bounded query
checkpointing problem. This algorithm runs at the root node of
the pipeline and considers various restart plans identified by
maintaining a sliding window of result records.

A naïve strategy suggested by the problem statement in Section
3.3 enumerates all bounded restart plans as result records arrive at
the pipeline root. However, it is not necessary to enumerate all
bounded restart plans. Observe that if we have two restart plans
RP1 = RPlan(LB1,UB1) and RP2 = RPlan(LB2,UB2) where LB1 ≤
LB2 and UB1 ≥ UB2, then benefit(RP1) ≥ benefit(RP2). Thus, it
suffices to consider only maximal restart plans defined to be plans
(1) which are bounded and (2) where decreasing LB or increasing
UB violates the bound.

We capture this idea in our algorithm by considering maximal
skippable windows of result records. Given a window W, an
extension is any window W’ that has W as a proper sub-window
(so W’ must have at least one more record than W). A skippable
window W is said to be maximal if it is bounded and it has no
skippable extension that is also bounded. It is not hard to see that
maximal restart plans correspond to maximal skippable result
windows and vice versa.

Our algorithm outlined in Figure 6 enumerates restart plans
corresponding to maximal skippable windows of result records.

Output Records of
Filter Operator

Records that do not
pass filtering criteria

Best-3 Region

Filter

Table A

738

The constraint on the bound is met by maintaining a sliding
window W of k+2 result records. The current window W is not
necessarily skippable, which is why the method FindSkippable is
invoked to find its largest sub-window that is skippable. Consider
the current window of size k+2. Let it be W = r i-1,…,ri+k. If W is
not skippable, then the largest skippable sub-window can be
found by finding the last record in W with source Source(r i-1) and
the first record with source Source(r i+k). A skippable sub-window
exists if and only if Source(r i-1) ≠ Source(r i+k).

Figure 6. Algorithm Opt-Skip

The other aspect of our algorithm is the computation of the
benefit of a restart plan. This is computed online as follows. For
result record ri, let GN≤(r i) be the total number of GetNext calls
issued in the pipeline until the point record ri was generated at the
root. Let GN(ri) denote the number of GetNext calls needed to
generate ri at the root beginning by invoking the operator tree on
record Source(ri) from the source. For a skippable window of
result records W= r i-1,…,ri+j , we can show that the benefit is

benefit(W) = GN≤(r i+j)– GN≤(r i-1)– GN(ri+j)
This formula enables us to compute the benefit in an online
fashion. In our implementation, we focus on pipelines consisting
of operators such as filters, index nested loops and hash joins
where GN(r i) is the number of operators in the pipeline. For such
pipelines, maximizing the benefit as stated above is equivalent to
maximizing GN≤(r i+j)– GN≤(r i-1). The null window referenced in
Figure 6 is defined to have a benefit of 0.

If the number of candidate records returned at the pipeline root is
less than or equal to the budget k, then we save all of them.
Whenever we find a set of result records in the current window
that is skippable and has a higher benefit than the current best
(maintained in a buffer BestW), we reset the current best
appropriately. The sliding window ensures that no window of
records with a higher benefit is missed. It can be shown that Opt-
Skip algorithm finds the restart plan with the highest benefit.

Finally, note that even though the problem statement only bounds
the number of result records cached as part of the restart plan, the
working memory used by Opt-Skip is also O(k).

4. SOLUTION FOR THE GENERAL CASE
In this section, we extend our solution to more complex query
execution plans that consist of multiple pipelines.

4.1 Execution Plans with Multiple Pipelines
A query execution plan involving blocking operators (such as sort
and hash join) can be modeled as a partial order of pipelines –
called its component pipelines – where each blocking operator is
a root of some pipeline. For example, the execution plan in Figure
7 features two pipelines, P1 and P2. These pipelines correspond to
the build side and probe side of a Hash Join respectively. In
pipeline P1, the Table A is scanned and the records that satisfy
the selection criteria of the Filter operator are used in the build
phase of the Hash Join. The execution of P2 commences after
hashing is finished. The index on Table B is scanned and records
are probed into the hash table for matches.

4.2 Bounded Query Checkpointing for Multi-
pipeline Plans
A multi-pipeline restart plan is obtained by replacing some subset
of the component pipelines with corresponding single-pipeline
restart plans. This preserves equivalence since replacing a
pipeline with its restart plan preserves equivalence. For instance,
in the execution plan in Figure 7, we could consider replacing
pipeline P1 or P2 or both with single-pipeline restart plans.

Our goal, as with single pipeline plans is to find a restart plan
such that the total state saved, counted in terms of records, is
bounded and where the cost of the plan measured in terms of
GetNext calls is minimized. Again, as with single pipeline plans,
we introduce the notion of the benefit of a restart plan which is the
difference in the number of GetNext calls between the initial plan
and the restart plan. Thus, we are left with the online problem of
maintaining the restart plan that yields the maximum benefit.

Figure 7. Execution Plan with Multiple Pipelines

4.3 Algorithms
The main difference from the single pipeline case is that for a
given budget of k records, we have the option of distributing these
k records among different pipelines to increase the benefit. A
pipeline in an execution plan can be in one of three states – (1)
completed execution, (2) currently executing or (3) not yet
started. Clearly, it suffices to consider pipelines that are currently
executing or have completed execution for replacement with a
restart plan.

P2

P1

Index Scan B

Hash Join

Table Scan A

Filter

/* W = current window, k= total budget */
/* BestW = best window */
Algorithm Opt-Skip
 BestW = Null
 W = Null
 For Each intermediate record ri do:
 Append ri to W
 If W.Size() > k+2 then
 W = last k+2 records in W
 SkippableW = FindSkippable(W)
 If Benefit(SkippableW) > Benefit(BestW) then
 BestW = SkippableW

Algorithm FindSkippable
Input: W = r i-1,…,ri+j .
 If (Source(ri-1) = Source(r i+j))
 Return Null
 Find the least j1 such that Source(r i-1)≠Source(r i-1+j1)
 Find the least j2 such that Source(r i+k--j2) ≠ Source(r i+k)
 Return the window (r(i-1+j1)-1,…,r(i+k-j2)+1)

739

Computing the optimal distribution of k records in the multi-
pipeline case could require excessive bookkeeping; we would
need to keep track of the optimal restart plans for different values
of k. This substantially increases the monitoring overhead during
the initial run of the query. In order to keep this overhead low, we
consider the following heuristic approach.

We always maintain the BestW window with a budget of k records
(see Section 3.4) for the current pipeline. Whenever a pipeline
finishes execution or the query is terminated, we combine this
window with the windows for the previously completed pipelines
so that the overall number of records to be saved is at most k. We
outline three methods of executing this step.

Current-Pipeline: This method retains only the BestW window of
the currently executing pipeline and ignores the windows
corresponding to the previous pipelines. While simple to
implement, this method could lead to poor restart plans since the
benefits yielded by previously completed pipelines could be
significantly higher than that yielded by the current pipeline. Our
experiments in Section 5.4 confirm this intuition.

Max-Pipeline: In contrast with Current-Pipeline, this method
takes the benefit of the previously completed pipelines into
account. It only considers replacing a single pipeline with its
optimal restart plan. Among all pipelines that are currently
executing or have completed execution, the pipeline that yields
the maximum benefit when replaced with a restart plan is chosen.
This is implemented as follows. At any point, we maintain the
window corresponding to the best pipeline among all pipelines
that have completed execution. The Opt-Skip algorithm is run on
the currently executing pipeline. When the current pipeline
finishes execution, the benefits yielded by the windows for the
current and previous pipelines are compared and the better of the
two is chosen.

Merge-Pipeline: In contrast with the above methods, the Merge-
Pipeline method considers distributing the space across more than
one pipeline. We illustrate this method for an execution plan
consisting of two pipelines. The Opt-Skip algorithm is used to
compute the optimal restart plan for each pipeline independently.
Consider the point where the second pipeline has finished
executing. We now have 2 result windows cached at the roots of
the two pipelines. Let these windows be (r0,r1 .. rk, rk+1) and (s0,s1
.. sk, sk+1). Since we cannot cache 2k records, we need to eliminate
some records from these windows. Suppose we wish to eliminate
one record. We greedily consider eliminating each of the four
corner records r0, rk+1, s0, sk+1. Among these four choices, we pick
the one that brings about the least reduction in benefit. Since the
budget is k, this process is repeated k times.

Sub-tree Caching: We also consider the case where the number
of records returned by some node in the execution plan is less
than or equal to the budget k. By saving all of these records, we
can skip re-executing the whole sub-tree rooted at this node. We
refer to this method as sub-tree caching. The benefit yielded by
saving this set of records is set to the number of GetNext calls
issued over the entire sub-tree.

5. EXPERIMENTS
In this section, we present an experimental evaluation of bounded
query checkpointing. Our prototype is built by modifying the
query execution engine of Microsoft SQL Server 2005. We add
the primitives required for Stop-and-Restart execution outlined in

Section 3.1. The clustered index scan operator is extended to
accept values LB and UB and implement the skip-scan operator as
described in Section 3.1. In our implementation, the saved
intermediate results from the initial run are cached in memory and
reused during the restart.

The main goals of the experiments are to study:

• The effect of data clustering on the benefit of bounded
query checkpointing

• The utility of bounded query checkpointing for complex
queries

• The overhead of bounded query checkpointing

• The different algorithms presented for the case of multi-
pipeline execution plans

• The effect of the budget k on benefit

Databases: We use both benchmark and real data sets to evaluate
our prototype. We use the TPC-H 1 GB database. The original
data generator from TPC [17] does not introduce any skew in the
data. We use a data generator [21] that introduces a skewed
distribution for each column independently in a relation. We use a
zipfian distribution with a skew factor of z = 1. Every table has a
clustered index on the primary key. For our workload, we use all
the queries that reference the Lineitem table; these are typically
the long running queries among the TPCH suite. In order to
understand how the prototype works on real data sets, we also
present an evaluation using the personal edition of the Sky Server
database [18] . This is a publicly available database of astronomy
data.

Evaluation Metric: Queries that are terminated have to be rerun
entirely in the absence of techniques suggested in this paper. We
use the GetNext model of work (see Section 2.3 for details). Let T
denote the total number of GetNext calls in the execution of a
query Q. Let T1 denote the number of GetNext calls invoked
during the initial run before the query is stopped. Let T2 be the
number of GetNext calls invoked during the restart to reach the
same point in execution where the query was originally stopped.
Note that this point in execution is well defined for our restart
plans. (T1-T2) measures the benefit of the restart plan (see
Section 3.2). We define the Percentage_Work_Saved (PWS) as

PWS = (T1-T2) / T1 * 100

We instrument the query execution to write out the total number
of GetNext calls seen thus far as well as the benefit value
corresponding to the best restart plan until that point. After the
query execution is complete, we can analyze this log to figure out
what would happen if the query were terminated at any particular
point in the past (for the current k value).

5.1 Use of GetNext Model
For the TPC-H queries used in our experiments, the leaf nodes in
the query execution plan are all clustered index scans. Prior work
on progress estimation indicates that the GetNext model is well-
correlated with execution time for such scan-based plans [3].

We study the absolute error between the PWS values computed
using execution times and the GetNext model for the following
join query. The execution times are measured on a machine with
3.2 GHz CPU and 1 GB of RAM.

740

SELECT COUNT (*)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey AND

 l_receiptdate > ‘1998-01-01’

GetNext vs Execution Times

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

25% 50% 75% 90%

Point of Term ination

A
b

so
lu

te
 E

rr
o

r
in

 P
W

S

Figure 8. GetNext Model vs. Execution Times

The query plan is a hash join with the lineitem table as the build
input. The budget k is set to 250 (chosen to be small enough for
sub-tree caching to be inapplicable). Figure 8 illustrates the
absolute error between the PWS computed using the GetNext
model and actual execution times as a function of when the query
is terminated. Note that the absolute error is uniformly low
(around 1%) across different termination points of the query. We
also observe similar results for different selectivity values for the
predicate.

We do note that for execution plans involving operators such as
index seeks, a weighted version of the GetNext model would be
more appropriate.

5.2 Effect of Clustering
One of the main factors that influence the benefit yielded by the
skip-scan operator is the order in which records are laid out on
disk. Thus for example in Figure 4, if the records satisfying the
filter predicate are evenly spaced, the benefits of bounded
checkpointing would not be as significant. We study this
empirically in this section.

Figure 9. Effect of Clustering.

We use a join query between the lineitem and orders table which
has a range predicate on the l_receiptdate column of the lineitem
table. We vary the selectivity value from around 0.005% to 10%
by suitably varying the predicate on the l_receiptdate column. We

pick the budget k so that it is large enough to save all the
intermediate records only when the selectivity is less than 0.01%.

For the above query, we consider three different clusterings of the
lineitem table as follows.

Independent (IND): The lineitem table is clustered using the
l_returnflag column. The predicate (on the l_receiptdate column)
has no correlation with the clustering column. Thus, the records
that satisfy the predicate are evenly spaced on disk.

Strongly Correlated (SC): The lineitem table is clustered using the
l_shipdate column. Since l_shipdate and l_receiptdate are highly
correlated, the records that satisfy a range predicate on the
l_receiptdate are likely to be clustered together.

Weakly Correlated (WC): The lineitem table is clustered using the
l_orderkey column. This represents a scenario in which the
correlation between the clustering column and the predicate
column falls in between the previous two cases.

Figure 9 plots the PWS values for all the 3 cases (IND, WC, SC).
We terminate the query at the 50% point (that is, after 50% of the
GetNext calls are over in the initial run); the results are similar for
other points of termination.

For the cases where the entire set of intermediate results can be
saved (the 0.05% and 0.01% cases), the PWS is maximum
independent of the clustering.

As expected, a higher degree of correlation yields greater
benefits. Thus, the SC case yields the maximum benefit followed
by WC followed by IND.

For a given clustering of the data, increasing the selectivity of the
predicate in general decreases the benefit. However, the rate at
which the benefit decreases is again dependent on the specific
clustering. Thus, the benefit for SC decreases much more slightly
than that for WC and IND. For example, for the IND case, any set
of k-records would have the same benefit and this would decrease
linearly with increasing selectivity. In such cases, one can expect
only relatively small benefits in the restart for small values of k.

SC represents the best-case scenario as the correlation between
the l_receiptdate and the l_shipdate attributes ensures that the
skip-scan operator yields maximum benefits even with increasing
selectivity.

Thus, bounded checkpointing yields maximum benefit when
either selectivity is low or there is a strong correlation between
predicate column and the clustering column.

5.3 Evaluation on TPC-H Queries
One important factor is the overheads imposed by our techniques.
As mentioned in Section 2.3, this has two components. One is the
stop-response-time, which is negligible for small values of k (we
typically set it so that all records we save can be accommodated
in a few pages). The other important parameter is the monitoring
overheads incurred in the initial run (when the query is not
terminated). For the TPC-H workload, we observe that for most of
the queries the overheads are within 3% of the original query
execution times.

Figure 10 shows the PWS for the TPC-H workload when the
queries are terminated at the 50% point. We set the budget k to be
250 (If we assume a database page size of 8KB and an average
size of an intermediate record as 32 bytes, 250 records can fit in a

741

single page). The plots in the Figure 10 show that we can save a
significant portion of the work done in the initial run by utilizing
only a small amount of state. Among the 17 queries in the
workload, the PWS is 40% or more for nearly half the queries in
the workload.

TPCH Queries (K=250)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 3 4 5 6 7 8 9 10 12 14 15 17 18 19 20 21

TPCH Query

P
W

S

Figure 10. TPCH Queries (Termination at 50%).

Query 17 represents a case where the PWS is 100%; this is
because the predicates are very selective and subtree caching is
applicable. On the other hand, consider a scheme for bounded
checkpointing that relies only on subtree caching, that is it saves
all intermediate records, as long as the number of records does not
exceed k. Such a scheme would only be applicable for Query 17
in the workload, while the techniques proposed in this paper yield
significant benefits for a much larger number of queries.

For Queries 1 and 3, we get practically no benefit. Query 3 selects
most of the records in lineitem which are evenly spaced out on
disk. Thus saving just 250 records does not yield substantial
benefits.

For Query 1, saving and reusing the partial sums corresponding to
the aggregates would have resulted in significant benefit. In our
prototype we focus on saving intermediate results and do not save
any state that is internal to operators. We discuss how to
incorporate partial operator state in Section 6.

5.4 Algorithm Choice for Multiple Pipelines
In Section 4.2, we presented three algorithms for the case of
Multiple Pipelines (Current-Pipeline, Max-Pipeline and Merge-
Pipeline). We first study the Current-Pipeline algorithm. Among
the 17 queries executed for nearly half of the queries, Max-
Pipeline and Merge-Pipeline yield higher benefit than Current-
Pipeline, and for the remaining queries, the benefits yielded by all
algorithms are equal. In fact, it can be formally shown that the
Current-Pipeline algorithm yields at most the same benefit as
either of the Max-Pipeline and Merge-Pipeline algorithms.
Moreover, the benefits yielded by the Current-Pipeline algorithm
significantly vary with the termination point. Figure 11 illustrates
how the PWS varies as a function of when the query is terminated
for the Current-Pipeline algorithm. For instance, if Query 10 (a
join of 4 relations) is stopped at 60%, the PWS is around 25%.
But if the same query were stopped at 80%, there are practically
no benefits.

Current-Pipeline Algorithm

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10
.00

%

20
.00

%
30

%
40

%
50

%
60

%
70% 80% 90

%

Point of Term ination

P
W

S

Query 10

Query 12

Query 14

Query 18

Figure 11. Current-Pipeline Approach.

Comparing Multi-Pipeline Algorithms

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

10
.00

%

20
.00

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

Point of Term ination

P
W

S

Current-Pipeline

Max-Pipeline

Merge-Pipeline

Figure 12. Multi-Pipeline Algorithms.

In Figure 12, we illustrate for Query 10 how the Max-Pipeline
and the Merge-Pipeline algorithm compare to the Current-
Pipeline algorithm. For this query, the best pipeline to skip is the
one in which the source node is the Lineitem table. Both the Max-
Pipeline and Merge-Pipeline algorithm are able to identify this
unlike the Current-Pipeline algorithm. For this query, the
pipelines executed after the 70% point are not good candidates for
utilizing the skip-scan operator. In this case the savings obtained
by using the Max-Pipeline and the Merge-Pipeline algorithm are
the same.

We now compare the Max-Pipeline and Merge-Pipeline
algorithms. Recall that unlike the Max-Pipeline algorithm, the
Merge-Pipeline algorithm can insert the skip-scan operator at
multiple pipelines. In general for TPCH queries, most of the
benefit is obtained by performing a skip-scan over the lineitem
table. As a result, we find that the Max-Pipeline algorithm
performs as well as the Merge-Pipeline algorithm for many
queries. But there are cases where utilizing the skip-scan operator
at multiple pipelines is important. For instance, Figure 13 shows
how the Merge-Pipeline algorithm outperforms the Max-pipeline
algorithm for TPCH Query 21. Query 21 involves self-joins of the
Lineitem table and the Merge-Pipeline algorithm can utilize the
skip functionality on multiple scans of the Lineitem table. Notice
that the savings are equal until the first pipeline finishes execution
(at around 50%).

742

Max-Pipeline vs Merge-Pipeline (Query 21)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Point of Termination

P
W

S MAX-Pipeline

Merge-Pipeline

Figure 13. Max-Pipeline vs. Merge-Pipeline

5.5 Effect of Budget k
In Figure 14, we study how the PWS varies as a function of k. We
show results for k = 1000, 5000 and 50000. We use a termination
point of 50%. While it is clear that the PWS increases
monotonically with k, the plots indicate that this is not necessarily
linear. Depending on the clustering of the data, PWS can grow
sub-linearly with k. Once k is large enough for subtree caching,
the benefits do not necessarily increase proportionately. Further,
as shown by Figure 5, the data clustering could be such that
saving a small number of records clustered together yields most of
the benefit after which we obtain diminishing returns as k
increases. For nearly half the queries, we find that the PWS is
almost the same for all the above values of k.

Effect of K Value

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 4 6 8 10 14 17 19 21

TPCH Query

P
W

S

PWS (K=1000)

PWS(K=5000)

PWS (K=50000)

Figure 14. PWS as a function of k.

Of course, in general with higher values of k, the PWS increases.
For instance, for the K=50000 case, we can save 100% of the
work for 5 of the queries (compared to the single query in Figure
10). These results (in conjunction with those in Section 5.3) show
that if we carefully choose the set of intermediate records to save,
even a small amount of records can result in substantial benefits.

5.6 Evaluation on SkyServer Database
In this section, we study the effectiveness of bounded
checkpointing on real data. We use the publicly available personal
edition of the SkyServer database [18]. The query workload
consists of 32 queries. Figure 15 shows the PWS for all the long
running queries from this workload (the termination point is
50%).

Sky Server Queries (K = 250)

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

3 6 14 15 18 22 23 28 32 33

SkyServer Query#

P
W

S

Figure 15. Evaluation on SkyServer Database

The results show that bounded checkpointing is often useful for
real workloads; for nearly half of the queries the PWS is 40% or
more. An important point to note is that queries 22 and 32 are
single pipeline queries with no group-by or aggregations that
select most of the records in the table. For such queries, bounded
checkpointing is unlikely to yield significant benefit.

5.7 Summary
We summarize the experimental conclusions below

• There are many cases where bounded checkpointing is
useful (selective predicates, sub-tree caching or
correlation between the predicates and the clustering
column). Such cases are fairly common in the real and
benchmark data sets used in our experiments.

• Saving even a small amount of records can result in
substantial savings in the restart run if the records are
chosen carefully.

• Keeping track of previous pipelines while computing
the right set of records to save is important, for instance
the Merge-Pipeline algorithm is much better than the
Current-Pipeline algorithm.

• The monitoring overheads imposed by our algorithms
during the initial run are low. For most of the queries in
the TPCH suite, the overheads are within 3% of the
query execution times.

6. Discussion and Future Work
Thus far in this paper, we have introduced a space of restart plans
based on the skip-scan operator. Our experiments reported in
Section 5 show that we can obtain significant benefits by using
the framework we have proposed. In this section, we address
some open issues and while we defer a complete solution to future
work, we propose possible extensions of our techniques wherever
applicable.

Group by-Aggregation

One of the most common operations performed in long-running
decision support queries is group-by and aggregation. The
algorithms proposed in this paper handle this operation like any
other operation. For example, if the number of groups output is
small then subtree caching results in the entire output being saved
and reused when the query is restarted. Indeed, we obtain
significant benefits for the TPC-H benchmark queries as
documented in Section 5.

743

However, we have an opportunity to do even better for group-by-
aggregation in certain cases by saving partial aggregates. We
explain this with an example of streaming aggregation. Consider a
query that computes the expression sum (l_extendedprice) over
the Lineitem table. During query execution, the streaming
aggregation operator maintains a partial sum as a part of its
internal state. We have an opportunity here to persist the partial
sum when the query is stopped, and during the restart, restore the
internal state of aggregate operator with the saved partial sum and
skip the part of the table that contributed to the partial sum. This
example generalizes to the case of group-by aggregation. Note
that saving partial aggregates could potentially let us skip the
entire work done in the pipeline in the initial run. (For example,
TPCH Query 1 as discussed in Section 5.3).

Updates

Our main focus in this paper is on long-running decision support
queries run on data warehouses. Data warehouses are typically
maintained periodically by running a batch of updates. Therefore,
it is not unreasonable to assume that the database is static as
queries are run. Indeed, the discussion on equivalence of the
restarted plan and the original plan presented in Section 3.4
assumes that the database is not updated between the two runs.

We now discuss how the techniques presented in this paper can be
adapted to the case where the database can change as the query is
executed. Whenever a query plan (involving multiple pipelines) is
stopped, there is a set of pipelines which have not yet started
execution. Note that if all the relations updated belong to this set
and are not part of any other pipeline, the restart plan is
guaranteed to be equivalent to the original plan. This observation
can be used to check if the restart plan remains equivalent under
updates.

We can obtain a more comprehensive way of handling updates as
follows. Conceptually, we can think of the saved intermediate
results as a materialized view and maintain them in the presence
of updates by leveraging the extensive prior work on maintenance
of materialized views [8]. We note however that unlike
materialized views, the state we persist is captured using system
generated rid values that are not visible at the SQL level. We
would need to extend the database system to introduce the notion
of system materialized views which are not necessarily visible in
SQL.

Hash Spills

One important extension to the bounded query checkpointing
problem is to enable it to handle disk spills [7]. We need
additional logic to check equivalence of restart plans in the
presence of hash spills. Consider an example Hash Join where the
build relation is too large to fit in main memory. In this case, the
join spills one or more hash partitions to disk. Assume the query
execution is in the probe phase and we are computing the best-k
records to save at the output of the join. A probe side source
record for which no match is found in any of the in-memory
partitions cannot be skipped since we require that all the result
records produced by any skipped source record must be saved.

While a complete solution for handling spills can be complex, we
could proceed by using two straightforward methods. One is to
enhance the FindSkippable method to incorporate spills. Thus any
window of records that has records that hash to a spilled partition
is regarded as not skippable. An alternate approach is to disallow

saving results produced by operator nodes that can potentially
spill, such as hash join and hash-based group-by. Thus, for the
example above, we only save the results produced by the filter
below the hash join and use this to skip appropriately.

Resumption with Re-Optimization

We have assumed in the paper that the query plan used when the
query is restarted is exactly the same plan used in the initial run,
modulo replacing table scans with skip-scans. However, since we
could potentially be skipping large portions of the base tables, we
could obtain additional benefits by re-invoking the optimizer
when the query is restarted. For example, suppose that we are
skipping records on the probe side of a hash join. During restart,
fewer records are read from the probe-side table so that it may be
more efficient to perform an index nested loop join.

7. RELATED WORK
Cursors are a common interface for interacting with SQL queries
and can be used to iterate over the result of a query. The
execution can be paused merely by holding on to the current
cursor position. An alternate approach to pausing execution is to
simply suspend the query execution thread. Neither of these
approaches releases the resources consumed by the query, which
is the goal in this paper.

There has been prior work on pausing and resuming
dataflows[19][20]. The main technical difference in our approach
is that we focus on regenerating all the results (vs. generating only
the remaining results) and we use a bound on the amount of state
saved. We note that our techniques can be beneficial in the
context of “pause and resume” implementations for pipelines
whose root is a blocking operator such as a build phase of a
hybrid hash join. Further, there are many scenarios where the
stop-restart model of execution is more appropriate. For example,
a large class of 3-tier database applications is architected to be
stateless – in the event of failures (application crashes, connection
or SetQueryTimeOut in ODBC), they simply start afresh.

The paradigm of saving and reusing intermediate results has been
studied in various settings in prior work including view
management [8], semantic caching [5][9][10], and dynamic query
optimization [1][6][15]. We now distinguish our paper from each
of these areas.

Recall that a stop-restart execution consists of an initial run and a
restart run. We determine what to save and its corresponding
restart plan during the initial run and utilize this when the query is
restarted. Prior work on answering queries using views and
utilizing semantic caches is applicable to the restart phase where
we utilize the state saved to save computation. Our main focus in
this paper is on the bounded query checkpointing problem that
corresponds to the initial run of the query. This is more related to
the view selection problem [1][11][12][16]. The main differences
in our setting are that (1) we have a tight bound on the amount of
state we are allowed to save, in contrast with a bound based on
estimated size, (2) the criterion that determines what we save is
the restart of the same query as opposed to a given workload of
queries, and (3) ours is an online problem – we have to maintain a
restart plan as the query execution proceeds.

Techniques for dynamic query re-optimization [1][6][15] attempt
to detect sub-optimal plans during query execution and possibly
re-use any intermediate results generated to re-compute the new

744

optimal plan. We differ in that (1) if the currently executing plan
is already optimal, then query re-optimization is never invoked.
However, a plan (that is optimal) can still be chosen as a victim to
be terminated and restarted, (2) dynamic query re-optimization
techniques do not typically constrain the number of intermediate
results to save and reuse, and (3) queries are typically re-
optimized by invoking the query optimizer with updated
information. In contrast, we compute a restart plan online as the
query executes.

8. CONCLUSIONS
Resource contention among multiple long running decision
support queries could require the termination of one or more
queries in current systems. However, the work done by these
queries is lost even if they were close to completion. In this paper,
we outlined a Stop-and-Restart style query execution that can
address this problem. In particular, we looked at the bounded
query checkpointing problem and presented algorithms for the
same. Our experiments on a prototype system built by modifying
Microsoft SQL Server 2005 indicate that our algorithms can be an
interesting alternative to outright termination of queries. For many
of the queries in the TPC-H suite, we could provide a significant
benefit for the restart by only saving a small number of
intermediate records.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful comments.
We also thank Nicolas Bruno for helpful discussions and
feedback.

9. REFERENCES
[1] Agrawal, S., Bruno, N., Chaudhuri S., and Narasayya, V.

AutoAdmin: Self-Tuning Database SystemsTechnology.
IEEE Data Engineering Bulletin. 2006.

[2] Babu, S., Bizarro, and P., Dewitt, D. Proactive Re-
Optimization. Proceedings of ACM SIGMOD 2005.

[3] Chaudhuri, S., Narasayya V., and Ramamurthy, R.
Estimating Progress of Execution for SQL Queries.
Proceedings of ACM SIGMOD 2004.

[4] Chaudhuri, S., Kaushik R., and Ramamurthy, R. When Can
We Trust Progress Indicators for SQL Queries? Proceedings
of ACM SIGMOD 2005.

[5] Dar, S., Franklin, M., Jonsson, B., Srivastava, D., Tan, M.
Semantic Data Caching and Replacement. Proceedings of
VLDB 1996.

[6] Dewitt, D., and Kabra, N. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans.
Proceedings of ACM SIGMOD 1998.

[7] Graefe, G. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv. 25(2): 73-170 (1993).

[8] Gupta, A., Mumick, I.S., Materialized Views: Techniques,
Implementations, and Applications. MIT Press. 1998.

[9] Haas, L., Kossmann, D., Ursu, I. Loading a Cache with
Query Results. Proceedings of VLDB 1999.

[10] Jónsson, B. Þ., Arinbjarnar, M., Þórsson, B., Franklin, M. J.,
and Srivastava, D. 2006. Performance and overhead of
semantic cache management. ACM Trans. Inter. Tech. 6, 3
(Aug. 2006)

[11] Kotidis, Y., and Roussopoulos, N. DynaMat: A Dynamic
View Management System for Data Warehouses.
Proceedings of ACM SIGMOD 1999.

[12] S.Lightstone et al. Making DB2 products self managing.
Strategies and Experiences. IEEE Data Engineering Bulletin.
2006.

[13] Luo, G., Naughton, J., Ellmann, C., and Watzke, M. Toward
a Progress Indicator for Database Queries. Proceedings of
ACM SIGMOD 2004.

[14] Luo,G., Naughton, J., Ellmann, C., and Watzke, M.
Increasing the Accuracy and Coverage of SQL Progress
Indicators. ICDE 2005.

[15] Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh,
H., and Cilimdsiz, M. Robust Query Processing through
Progressive Optimization. Proceedings of ACM SIGMOD
2004.

[16] Roy, P., Ramamritham, K., Seshadri, S., Shenoy, P., and
Sudarshan, S. Don't Trash your Intermediate Results, Cache
Them. The Computing Research Repository cs.DB/0003005
(2000).

[17] Transaction Processing Council. TPC-H Benchmark.
http://www.tpc.org/

[18] Sky Server Database. http://skyserver.sdss.org/

[19] B. Chandramouli, C.N.Bond, S.Babu, J. Yang. On
Suspending and Resuming Dataflows. ICDE 2007.

[20] W. Labio, J.L.Wiener, H.Garcia-Molina, V.Gorelik.
Efficient Resumption of Interrupted Warehouse Loads.
SIGMOD 2000.

[21] S.Chaudhuri, V.Narasayya. Program for TPC-D Data
Generation with Skew.
ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew

745

