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ABSTRACT 
Long running decision support queries can be resource intensive 
and often lead to resource contention in data warehousing 
systems. Today, the only real option available to the DBAs when 
faced with such contention is to carefully select one or more 
queries and terminate them. However, the work done by such 
terminated queries is entirely lost even if they were very close to 
completion and these queries will need to be run in their entirety 
at a later time. In this paper, we show how instead we can support 
a Stop-and-Restart style query execution that can leverage 
partially the work done in the initial query execution. In order to 
re-execute only the remaining work of the query, a Stop-and-
Restart execution would need to save all the previous work. But 
this approach would clearly incur high overheads which is 
undesirable. In contrast, we present a technique that can be used 
to save information selectively from the past execution so that the 
overhead can be bounded.  Despite saving only limited 
information, our technique is able to reduce the running time of 
the restarted queries substantially. We show the effectiveness of 
our approach using real and benchmark data. 

1. INTRODUCTION 
Decision support queries can be long running. For example, 
recent TPC-H [17] benchmark results show that these queries 
might take even hours to execute on large datasets. When multiple 
long running queries are executed concurrently, they compete for 
limited resources including CPU, main memory, and workspace 
area on disk used to store temporary results, sort runs and spilled 
hash partitions. Contention for valuable resources can 
substantially increase the execution times of the queries. It is 
possible to suspend the execution threads of one or more low-
priority queries and resume them at a later time. The main 
problem with this approach is that suspending the execution of a 
query only releases the CPU resources; the memory and disk 
resources are still retained until the query execution thread is 
resumed.  Thus, the only real option available today in order to 
release all resources is to carefully select one or more queries 
(based on criteria such as the importance of the query or the 
amount of resources used by it or progress information [3][13]) 
and terminate them. Terminating one or more queries releases all 

resources allocated to them, which can be used to complete other 
queries.  

In today’s database systems, the work done by such terminated 
queries is entirely lost even if they were very close to completion 
and these queries will need to be run in their entirety at a later 
time. In this paper we show how instead we can support a Stop-
and-Restart query execution that can leverage partially the work 
done in the initial query execution to reduce the execution time if 
we were to restart it. 

Any attempt to save and reuse all intermediate results potentially 
requires very large memory and/or disk resources (for instance, 
hash tables in memory, sort runs in disk, etc.) in the worst case, 
amounting to significant overheads. Therefore, in this paper we 
propose Stop-and-Restart query execution that is constrained to 
save and reuse only a bounded number of records (intermediate 
records or output records) thus releasing all other resources. Such 
an approach is attractive since it limits the resources retained by a 
query that has been terminated. We refer to this as the bounded 
query checkpointing problem. Our solution is based on choosing a 
subset of records to save during normal execution and then 
skipping the corresponding records when performing a scan 
during restart. We introduce a generalization of the scan operator 
called skip-scan to facilitate such a restart technique. We 
demonstrate that in order to obtain significant speed up, it is 
necessary to carefully select the subset of records to save. The key 
challenge we address is to select this set of records online as 
query execution proceeds, since we have no knowledge of when 
or if at all the query is going to be terminated. Our experiments 
based on a prototype built by modifying Microsoft SQL Server 
2005 indicate that there are many cases where bounded query 
checkpointing yields significant benefits even when a relatively 
small number of records are saved. Of course, we get higher 
benefits when more records can be saved. 

The primary target for Stop-and-Restart style execution is 
decision-support queries issued in a data-warehousing 
environment. We assume that the database is read only except for 
a batched update window when no queries are executed. Finally, 
although saving and reusing intermediate results is reminiscent of 
the techniques used for dynamic query optimization [1][6][15], 
the constraint of saving and reusing only a bounded number of 
records is unique to our problem.  

The outline of the paper is as follows. In Section 2 we review 
some preliminary concepts and also present desirable properties 
of Stop-and-Restart style query execution. Section 3 discusses 
Stop-and-Restart execution for query plans consisting of a single 
pipeline. In this section, we introduce how Stop-and-Restart query 
execution can be supported in the framework of query processing 
engine of relational database systems. Based on a GetNext model 
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of work for query execution, we also present an algorithm to 
compute the set of intermediate results to save and reuse for the 
case of single pipeline execution plans. In Section 4, we extend 
our algorithms to work for more complex execution plans. We 
present an experimental evaluation of our prototype system in 
Section 5 and present discussions on important extensions in 
Section 6. Section 7 presents related work and Section 8 
concludes the paper. 

2. PRELIMINARIES 

2.1 Pipelines and Plans 
The Stop-and-Restart style query execution is described around 
query execution plans. A query execution plan is a tree where 
nodes of the tree are physical operators.  Each operator exposes a 
GetNext interface and query execution proceeds in a demand 
driven fashion [7]. In this paper, for ease of exposition we do not 
consider parallel query execution plans. 

An operator is a blocking operator if it produces no output until it 
consumes at least one of its inputs completely. The Hash join is 
an example of blocking operator. The probe phase cannot begin 
until the entire build relation is hashed.  

A pipeline is a maximal subtree of operators in an execution plan 
that execute concurrently. The examples in Figure 1 illustrate 
plans that execute in a single pipeline. Every pipeline has one or 
more source nodes, the operator that is the source of the records 
operated upon by remaining nodes in the pipeline. The Table Scan 
A in Figure 1(a) and Index Scan A in Figure 1(b) are examples of 
source nodes. We discuss execution plans consisting of multiple 
pipelines in Section 4. 

2.2 Modeling Work during Query Execution 
We require a way to measure the amount of work done during 
query execution. One natural candidate is the optimizer cost 
model; however we require a more light-weight alternative. In 
this paper we use the total number of GetNext calls measured over 
all the operators to model the work done during query execution. 
While a weighted aggregation of GetNext calls is more 
appropriate for complex queries involving operations such as 
subqueries and UDFs, we use the counts as a first step. This is 
consistent with recent work on progress estimation for queries 
which also employs similar schemes to model the work done 
during query execution [3][13][14][4]. Our experiments in 
Section 5.1 indicate that the improvement as measured by the 
GetNext model is almost the same as that in execution times.  

2.3 Stop-and-Restart Style Query Execution 
Stop-and-Restart style query execution involves two distinct 
phases – the initial  run which is the first query execution until it is 
terminated, and the restart run which is the re-execution of the 
same query at a later time. We are allowed to save some state 
during the initial run which can be utilized during the restart run. 
When the query is killed, this state is saved coupled with a 
modified execution plan utilizing it. During the restart run, the 
modified plan (referred to as a restart plan) is executed. In this 
paper, we only consider saving intermediate results generated 
during the initial run. We discuss other candidates for saving such 
as the internal state of operators in Section 6. Also, while our 
approach can be extended to cover the case where the storage 

constraint is given in terms of number of bytes, in this paper we 
consider the constraint specified in terms of number of records for 
simplicity. 

We now discuss desirable properties of a Stop-and-Restart style 
execution.  

Correctness: The restart plan must be equivalent to the original 
query plan. 

Low Overhead: There are two forms of overhead in a Stop-and-
Restart framework. One is the monitoring overhead incurred 
when the query is not terminated. Clearly, the performance in this 
case should be comparable to normal query execution. Secondly, 
we have the stop-response-time, which is the time taken to 
terminate the query. The process of query termination must be 
fast, which constrains the number of records we can save. This is 
a critical design point for the viability of our approach. 

Generality: A Stop-and-Restart framework should be applicable 
to a wide range of query execution plans. 

Efficiency of Restart: The sum of the execution time before the 
query is stopped and the execution time after it is restarted should 
be as close as possible to the execution time of uninterrupted 
query execution. Thus, our main performance metric is how much 
of the work done during the initial run can be saved during the 
restart run. 

3. SINGLE PIPELINE QUERY PLANS 
We consider pipelines that consist of a single source node and 
where the results of the pipeline are obtained by invoking the 
operator tree on each source record in order and taking their 
union. The pipelines in Figure 1 fall in this class – the source 
nodes are shaded. Result records are generated at the root node of 
the pipeline. At any point in execution, it is meaningful to talk 
about the current source record being processed in the pipeline. 
There are pipelines having operators such as Top, Merge-Join that 
do not fall in this class; our techniques however are applicable to 
such pipelines also. We extend our solution to query execution 
plans consisting of multiple pipelines in Section 4.  

 

Figure 1. Examples of a single pipeline query execution plans.   

3.1 Primitives for Stop-and-Restart Execution 
In this section, we outline the primitives for supporting Stop-and-
Restart execution. 

Rids at the Source Node  

We assume that each source record has a unique identifier rid. 
This can be implemented say by adding the primary key value to 
the key of a clustering index. For instance, Microsoft SQLServer 
adds the primary key to any index key. Without loss of generality, 
we assume that rids are numbered 1,2,3… in the order in which 

(a) 

Table Scan A 

Filter 

(b) 

Index Scan A Index Seek B 

Index Nested 
 Loops Join 
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they are scanned. For ease of exposition, we assume a special rid 
value 0 indicating the beginning of the table. We use the notation 
(LB,UB) to denote all source records with rids between, but not 
including LB and UB, whereas [LB,UB] also includes LB and 
UB. We also assume that for any intermediate record r, we can 
obtain the rid for the corresponding source record, denoted as 
Source(r).  

Skip-Scan Operator 

The simplest stop-restart technique is to save all result records 
generated during the initial run at the root of the pipeline. For 
example, for the plan shown in Figure 1(a), we save all records 
returned by the Filter operator. During the restart run, the goal is 
to avoid re-computing these saved results. We accomplish this by 
introducing the notion of skipping – we skip the corresponding 
source records when scanning the source in the restart run.  

We introduce a generalized version of a scan operator that can be 
used to support this. It takes two rids LB < UB as an input. It 
scans all records in the source node up to and including LB and 
resumes the scan from the record with rid UB (included in the 
scan), skipping all records in between. We refer to this primitive 
as the skip-scan operator.  

The skip-scan operator can be built on top of existing operators 
such as Table Scan and Clustered Index Scan utilizing the random 
access primitives from the storage manager. For instance, in a 
Clustered Index Scan, we seek to the UB value using the key (we 
assume they are unique). In the case of Heap File Scan, we 
remember the page (pageid, slotid) to resume the scan from. In 
general, the skip-scan operator can be extended to skip multiple 
portions of the source node. In this paper, we focus on skipping a 
single contiguous range.  

                               Figure 2. Skip-Scan Plan 

Saving and Returning Records 

We extend all operators with the ability to save a sequence of 
records. This logic is only invoked at the root of the pipeline, 
which is marked at compilation time. If and when the query is 
terminated, a restart plan that uses this sequence of records is 
saved where the source node is replaced with a corresponding 
skip-scan operator.  

Any pair of rids LB < UB (at the source node) identifies a restart 
plan RPlan(LB,UB) as follows. We replace the scan of the source 
node with a skip-scan seeded with LB and UB and cache the 
results generated by records in the region (LB,UB) at the root of 
the pipeline.  

Now we explain the execution of the restart plan. Consider the 
point where the skip-scan operator has returned the source record 
corresponding to LB. At this point, similar to the end-of-stream 
(EOS) message that a scan operator sends at termination, the skip-

scan operator sends an end-of-LB (EOLB) message before it skips 
to the UB. On receiving the EOLB message the pipeline root 
returns the saved records, after which it makes GetNext calls to its 
child operator as usual. Figure 2 illustrates an example of a restart 
plan. The Filter operator is the root of the pipeline which returns 
the three saved records on receiving the EOLB message from the 
skip-scan operator.  

3.2 Restart Plans and Their Benefit 
Instead of reasoning in terms of cost, we reason in terms of 
benefit. The benefit of a restart plan is the number of GetNext 
calls skipped, i.e., the difference between the number of GetNext 
calls completed while executing the original plan and the restart 
plan. For ease of exposition, we ignore the GetNext calls involved 
in returning the results cached at the root of the pipeline of a 
restart plan. However, all our results extend even if we count 
these calls. 

Since we cache result records at the root of the pipeline, we 
search the space of restart plans by examining result records at the 
root. For a window W consisting of contiguous records ri-1,…,ri+j 
(j ≥ 0) at the root of the pipeline, we use the corner records ri-1 and 
ri+j to derive a restart plan as follows. The set of result records 
excluding the two corners, that is ri,…,ri+j-1 is called the candidate 
set underlying W with size j. By setting LB = Source(r i-1) and UB 
= Source(r i+j ) and saving the candidate set, we obtain a candidate 
restart plan.  

However, the candidate restart plan is not necessarily equivalent 
to the original query plan, as illustrated by the following example. 
Suppose we are executing an Index Nested Loop Join between 
Tables A and B as shown in Figure 3. Consider the sliding 
window of three result records r0 = (1,1), r1 = (2,2) and r2 = (2,2) 
shown shaded in the figure. The restart plan corresponding to this 
is defined by LB = 1 and UB = 2 thus leading to no record being 
skipped. The candidate set however has the single record r1 = 
(2,2) which implies that this restart plan is incorrect. Such 
duplication happens if and only if Source(r i-1) = Source(r i) or 
Source(r i+k) = Source(r i+k-1). 

 

       Figure 3. Example of Result Window that is not Skippable 

Result windows where Source(r i-1) ≠ Source(r i) and Source(r i+k) ≠ 
Source(r i+k-1) are called skippable. Thus, Figure 3 illustrates an 
example window that is not skippable.  

The candidate restart plan corresponding to a skippable window 
W is denoted as RPlan(W) and the benefit of RPlan(W) as 
benefit(W). 

We need an additional mechanism to handle certain corner cases. 
We assume two “dummy” result records appearing at the root of 
the pipeline: begin associated with the iterator’s Open call, and 
end associated with the call to Close. Source(begin) is defined to 

 .. 
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be 0. Source(end) is set to be the current source record being 
processed at the point of termination. Consider the query plan in 
Figure 1(a). Suppose that at the point of termination, no records 
have been output by the filter operator. In this case, we can skip 
the entire scan until this point. However, a candidate restart plan 
is only defined for windows that have at least two corner records. 
We need begin and end to capture such cases. 

3.3 Bounded Query Checkpointing 
We can use the primitives introduced above to save all result 
records but this incurs unbounded overhead since the number of 
results generated can be large. We control the overhead by 
constraining the number of records that can be saved. 

A skippable window W of result records is said to be bounded if 
its candidate has size at most k. The corresponding restart plan is 
also said to be bounded. In general, RPlan(LB,UB) is said to be 
bounded if the number of results cached is at most k.  

The bounded query checkpointing problem is the following online 
problem. We are given a pipeline P and a budget of k records. At 
any point in execution where the current source record being 
processed has identifier id, the goal is to maintain a bounded 
restart plan equivalent to P that yields the maximum benefit 
among all bounded restart plans RPlan(LB,UB) with LB < UB ≤ 
id. This is an online problem since we do not know when the 
query is going to be terminated. 

 

Figure 4. Optimal Bounded Restart Plan. 

Figure 4 illustrates an example for the query plan in Figure 1(a) 
where the budget k is three. The records that satisfy the filter 
predicate are marked out (other records are in the gray region). 
Suppose the query is terminated after all the records shown in the 
Figure are processed. The label “Best-3 Region” shows the region 
that is skipped in the optimal restart plan.  

There is an inherent tradeoff between the number of records we 
can cache and the benefit we can obtain during restart. For a given 
budget k, there are cases where the maximum benefit we can 
obtain is limited, independent of the specific algorithm we use. 
Consider the query select * from T  that scans and returns 
all records in T. Any algorithm can skip at most k records in the 
scan. If k is small compared to the cardinality of T, then most of T 
has to be scanned during restart.  

However, in practice, there are cases where even a small value of 
k can yield significant benefit provided we carefully choose 
which k records to save. This holds even when the budget k is 0. 
For example, in Figure 4, we can skip the region between any two 

successive source records that satisfy the filter predicate. We now 
discuss an experiment that illustrates this point. 
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Figure 5. Benefit(ri-1, , ri) vs. i. 

We choose a query over the TPC-H data that selects all rows from 
the lineitem table that satisfy the predicate l_shipdate <= 

‘1996-12-01’. The execution plan for this query is identical to 
the plan shown in Figure 1(a). We execute this query over the 
TPC-H dataset where the data distribution is skewed (refer to 
Section 5 for details). Figure 5 plots the benefit of the result 
window (ri-1,ri) (Y-axis) against i (this corresponds to setting the 
budget to 0). We note that there is significant non-uniformity in 
the graph. Most of the benefit is clustered in a range of about 
2000 records between r4000 and r6000, whereas the lineitem table 
has 6 million records. Now suppose that the budget k is 2000. The 
benefit of saving the 2000 records between r4000 and r6000 can be 
obtained by aggregating the corresponding benefits from Figure 5. 
This benefit is significant and is much higher than the aggregate 
corresponding to an arbitrary subset of 2000 records. 

3.4 Opt-Skip Algorithm  
We now present the Opt-Skip algorithm for the bounded query 
checkpointing problem. This algorithm runs at the root node of 
the pipeline and considers various restart plans identified by 
maintaining a sliding window of result records.  

A naïve strategy suggested by the problem statement in Section 
3.3 enumerates all bounded restart plans as result records arrive at 
the pipeline root. However, it is not necessary to enumerate all 
bounded restart plans. Observe that if we have two restart plans 
RP1 = RPlan(LB1,UB1) and RP2 = RPlan(LB2,UB2) where LB1 ≤ 
LB2 and UB1 ≥ UB2, then benefit(RP1) ≥ benefit(RP2). Thus, it 
suffices to consider only maximal restart plans defined to be plans 
(1) which are bounded and (2) where decreasing LB or increasing 
UB violates the bound.  

We capture this idea in our algorithm by considering maximal 
skippable windows of result records. Given a window W, an 
extension is any window W’ that has W as a proper sub-window 
(so W’ must have at least one more record than W). A skippable 
window W is said to be maximal if it is bounded and it has no 
skippable extension that is also bounded. It is not hard to see that 
maximal restart plans correspond to maximal skippable result 
windows and vice versa. 

Our algorithm outlined in Figure 6 enumerates restart plans 
corresponding to maximal skippable windows of result records. 

Output Records of 
Filter Operator 

Records that do not 
pass filtering criteria 

Best-3 Region 

           

Filter 

Table A 

    

738



The constraint on the bound is met by maintaining a sliding 
window W of k+2 result records. The current window W is not 
necessarily skippable, which is why the method FindSkippable is 
invoked to find its largest sub-window that is skippable. Consider 
the current window of size k+2. Let it be W = r i-1,…,ri+k. If W is 
not skippable, then the largest skippable sub-window can be 
found by finding the last record in W with source Source(r i-1) and 
the first record with source Source(r i+k). A skippable sub-window 
exists if and only if Source(r i-1) ≠ Source(r i+k).  

 

Figure 6. Algorithm Opt-Skip 

The other aspect of our algorithm is the computation of the 
benefit of a restart plan. This is computed online as follows. For 
result record ri, let GN≤(r i) be the total number of GetNext calls 
issued in the pipeline until the point record ri was generated at the 
root. Let GN(ri) denote the number of GetNext calls needed to 
generate ri at the root beginning by invoking the operator tree on 
record Source(ri) from the source. For a skippable window of 
result records W= r i-1,…,ri+j , we can show that the benefit is  

benefit(W) = GN≤(r i+j )– GN≤(r i-1)– GN(ri+j )  
This formula enables us to compute the benefit in an online 
fashion. In our implementation, we focus on pipelines consisting 
of operators such as filters, index nested loops and hash joins 
where GN(r i) is the number of operators in the pipeline. For such 
pipelines, maximizing the benefit as stated above is equivalent to 
maximizing GN≤(r i+j )– GN≤(r i-1). The null window referenced in 
Figure 6 is defined to have a benefit of 0. 

If the number of candidate records returned at the pipeline root is 
less than or equal to the budget k, then we save all of them. 
Whenever we find a set of result records in the current window 
that is skippable and has a higher benefit than the current best 
(maintained in a buffer BestW), we reset the current best 
appropriately. The sliding window ensures that no window of 
records with a higher benefit is missed. It can be shown that Opt-
Skip algorithm finds the restart plan with the highest benefit. 

Finally, note that even though the problem statement only bounds 
the number of result records cached as part of the restart plan, the 
working memory used by Opt-Skip is also O(k). 

4. SOLUTION FOR THE GENERAL CASE 
In this section, we extend our solution to more complex query 
execution plans that consist of multiple pipelines.  

4.1 Execution Plans with Multiple Pipelines 
A query execution plan involving blocking operators (such as sort 
and hash join) can be modeled as a partial order of pipelines – 
called its component pipelines – where each blocking operator is 
a root of some pipeline. For example, the execution plan in Figure 
7 features two pipelines, P1 and P2. These pipelines correspond to 
the build side and probe side of a Hash Join respectively. In 
pipeline P1, the Table A is scanned and the records that satisfy 
the selection criteria of the Filter operator are used in the build 
phase of the Hash Join. The execution of P2 commences after 
hashing is finished. The index on Table B is scanned and records 
are probed into the hash table for matches.  

4.2 Bounded Query Checkpointing for Multi-
pipeline Plans 
A multi-pipeline restart plan is obtained by replacing some subset 
of the component pipelines with corresponding single-pipeline 
restart plans. This preserves equivalence since replacing a 
pipeline with its restart plan preserves equivalence. For instance, 
in the execution plan in Figure 7, we could consider replacing 
pipeline P1 or P2 or both with single-pipeline restart plans. 

Our goal, as with single pipeline plans is to find a restart plan 
such that the total state saved, counted in terms of records, is 
bounded and where the cost of the plan measured in terms of 
GetNext calls is minimized. Again, as with single pipeline plans, 
we introduce the notion of the benefit of a restart plan which is the 
difference in the number of GetNext calls between the initial plan 
and the restart plan. Thus, we are left with the online problem of 
maintaining the restart plan that yields the maximum benefit. 

 

Figure 7. Execution Plan with Multiple Pipelines 

4.3 Algorithms  
The main difference from the single pipeline case is that for a 
given budget of k records, we have the option of distributing these 
k records among different pipelines to increase the benefit. A 
pipeline in an execution plan can be in one of three states –    (1) 
completed execution, (2) currently executing or (3) not yet 
started. Clearly, it suffices to consider pipelines that are currently 
executing or have completed execution for replacement with a 
restart plan.  

P2 

P1 

Index Scan B 

Hash Join 

Table Scan A 

Filter 

/* W = current window, k= total budget */ 
/* BestW = best window */ 
Algorithm Opt-Skip 
    BestW = Null 
    W = Null 
    For Each intermediate record ri do: 
        Append ri to W          
        If W.Size() > k+2 then 
            W = last k+2 records in W 
        SkippableW = FindSkippable(W) 
        If Benefit(SkippableW) > Benefit(BestW) then 
            BestW = SkippableW 
 
Algorithm FindSkippable 
Input: W = r i-1,…,ri+j .  
    If (Source(ri-1) = Source(r i+j )) 
          Return Null  
    Find the least j1 such that Source(r i-1)≠Source(r i-1+j1)  
    Find the least j2 such that Source(r i+k--j2) ≠ Source(r i+k) 
    Return the window (r(i-1+j1)-1,…,r(i+k-j2)+1) 
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Computing the optimal distribution of k records in the multi-
pipeline case could require excessive bookkeeping; we would 
need to keep track of the optimal restart plans for different values 
of k. This substantially increases the monitoring overhead during 
the initial run of the query. In order to keep this overhead low, we 
consider the following heuristic approach.  

We always maintain the BestW window with a budget of k records 
(see Section 3.4) for the current pipeline. Whenever a pipeline 
finishes execution or the query is terminated, we combine this 
window with the windows for the previously completed pipelines 
so that the overall number of records to be saved is at most k. We 
outline three methods of executing this step. 

Current-Pipeline: This method retains only the BestW window of 
the currently executing pipeline and ignores the windows 
corresponding to the previous pipelines. While simple to 
implement, this method could lead to poor restart plans since the 
benefits yielded by previously completed pipelines could be 
significantly higher than that yielded by the current pipeline. Our 
experiments in Section 5.4 confirm this intuition.  

Max-Pipeline:  In contrast with Current-Pipeline, this method 
takes the benefit of the previously completed pipelines into 
account. It only considers replacing a single pipeline with its 
optimal restart plan. Among all pipelines that are currently 
executing or have completed execution, the pipeline that yields 
the maximum benefit when replaced with a restart plan is chosen. 
This is implemented as follows. At any point, we maintain the 
window corresponding to the best pipeline among all pipelines 
that have completed execution. The Opt-Skip algorithm is run on 
the currently executing pipeline. When the current pipeline 
finishes execution, the benefits yielded by the windows for the 
current and previous pipelines are compared and the better of the 
two is chosen.  

Merge-Pipeline: In contrast with the above methods, the Merge-
Pipeline method considers distributing the space across more than 
one pipeline. We illustrate this method for an execution plan 
consisting of two pipelines. The Opt-Skip algorithm is used to 
compute the optimal restart plan for each pipeline independently. 
Consider the point where the second pipeline has finished 
executing. We now have 2 result windows cached at the roots of 
the two pipelines. Let these windows be (r0,r1 .. rk, rk+1) and (s0,s1 
.. sk, sk+1). Since we cannot cache 2k records, we need to eliminate 
some records from these windows. Suppose we wish to eliminate 
one record. We greedily consider eliminating each of the four 
corner records r0, rk+1, s0, sk+1. Among these four choices, we pick 
the one that brings about the least reduction in benefit. Since the 
budget is k, this process is repeated k times.  

Sub-tree Caching: We also consider the case where the number 
of records returned by some node in the execution plan is less 
than or equal to the budget k. By saving all of these records, we 
can skip re-executing the whole sub-tree rooted at this node. We 
refer to this method as sub-tree caching. The benefit yielded by 
saving this set of records is set to the number of GetNext calls 
issued over the entire sub-tree.  

5. EXPERIMENTS  
In this section, we present an experimental evaluation of bounded 
query checkpointing. Our prototype is built by modifying the 
query execution engine of Microsoft SQL Server 2005. We add 
the primitives required for Stop-and-Restart execution outlined in 

Section 3.1. The clustered index scan operator is extended to 
accept values LB and UB and implement the skip-scan operator as 
described in Section 3.1. In our implementation, the saved 
intermediate results from the initial run are cached in memory and 
reused during the restart.  

The main goals of the experiments are to study: 

• The effect of data clustering on the benefit of bounded 
query checkpointing 

• The utility of bounded query checkpointing for complex 
queries 

• The overhead of bounded query checkpointing 

• The different algorithms presented for the case of multi-
pipeline execution plans 

• The effect of the budget k on benefit 

Databases: We use both benchmark and real data sets to evaluate 
our prototype. We use the TPC-H 1 GB database. The original 
data generator from TPC [17] does not introduce any skew in the 
data. We use a data generator [21] that introduces a skewed 
distribution for each column independently in a relation. We use a 
zipfian distribution with a skew factor of z = 1. Every table has a 
clustered index on the primary key. For our workload, we use all 
the queries that reference the Lineitem table; these are typically 
the long running queries among the TPCH suite. In order to 
understand how the prototype works on real data sets, we also 
present an evaluation using the personal edition of the Sky Server 
database [18] . This is a publicly available database of astronomy 
data. 

Evaluation Metric: Queries that are terminated have to be rerun 
entirely in the absence of techniques suggested in this paper. We 
use the GetNext model of work (see Section 2.3 for details). Let T 
denote the total number of GetNext calls in the execution of a 
query Q. Let T1 denote the number of GetNext calls invoked 
during the initial run before the query is stopped. Let T2 be the 
number of GetNext calls invoked during the restart to reach the 
same point in execution where the query was originally stopped.  
Note that this point in execution is well defined for our restart 
plans. (T1-T2) measures the benefit of the restart plan (see 
Section 3.2). We define the Percentage_Work_Saved (PWS) as  

PWS =  (T1-T2) / T1 * 100 

We instrument the query execution to write out the total number 
of GetNext calls seen thus far as well as the benefit value 
corresponding to the best restart plan until that point. After the 
query execution is complete, we can analyze this log to figure out 
what would happen if the query were terminated at any particular 
point in the past (for the current k value).   

5.1 Use of GetNext Model  
For the TPC-H queries used in our experiments, the leaf nodes in 
the query execution plan are all clustered index scans. Prior work 
on progress estimation indicates that the GetNext model is well-
correlated with execution time for such scan-based plans [3].  

We study the absolute error between the PWS values computed 
using execution times and the GetNext model for the following 
join query. The execution times are measured on a machine with 
3.2 GHz CPU and 1 GB of RAM. 
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SELECT COUNT (*)  

FROM   lineitem, orders 

WHERE  l_orderkey = o_orderkey AND 

       l_receiptdate > ‘1998-01-01’ 
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Figure 8. GetNext Model vs. Execution Times 

The query plan is a hash join with the lineitem table as the build 
input. The budget k is set to 250 (chosen to be small enough for 
sub-tree caching to be inapplicable). Figure 8 illustrates the 
absolute error between the PWS computed using the GetNext 
model and actual execution times as a function of when the query 
is terminated. Note that the absolute error is uniformly low 
(around 1%) across different termination points of the query. We 
also observe similar results for different selectivity values for the 
predicate. 

We do note that for execution plans involving operators such as 
index seeks, a weighted version of the GetNext model would be 
more appropriate. 

5.2 Effect of Clustering 
One of the main factors that influence the benefit yielded by the 
skip-scan operator is the order in which records are laid out on 
disk. Thus for example in Figure 4, if the records satisfying the 
filter predicate are evenly spaced, the benefits of bounded 
checkpointing would not be as significant. We study this 
empirically in this section. 

 
Figure 9. Effect of Clustering. 

We use a join query between the lineitem and orders table which 
has a range predicate on the l_receiptdate column of the lineitem 
table. We vary the selectivity value from around 0.005% to 10% 
by suitably varying the predicate on the l_receiptdate column. We 

pick the budget k so that it is large enough to save all the 
intermediate records only when the selectivity is less than 0.01%.   

For the above query, we consider three different clusterings of the 
lineitem table as follows.  

Independent (IND): The lineitem table is clustered using the 
l_returnflag column. The predicate (on the l_receiptdate column) 
has no correlation with the clustering column. Thus, the records 
that satisfy the predicate are evenly spaced on disk. 

Strongly Correlated (SC): The lineitem table is clustered using the 
l_shipdate column. Since l_shipdate and l_receiptdate are highly 
correlated, the records that satisfy a range predicate on the 
l_receiptdate are likely to be clustered together.   

Weakly Correlated (WC): The lineitem table is clustered using the 
l_orderkey column. This represents a scenario in which the 
correlation between the clustering column and the predicate 
column falls in between the previous two cases. 

Figure 9 plots the PWS values for all the 3 cases (IND, WC, SC). 
We terminate the query at the 50% point (that is, after 50% of the 
GetNext calls are over in the initial run); the results are similar for 
other points of termination. 

For the cases where the entire set of intermediate results can be 
saved (the 0.05% and 0.01% cases), the PWS is maximum 
independent of the clustering. 

As expected, a higher degree of correlation yields greater 
benefits. Thus, the SC case yields the maximum benefit followed 
by WC followed by IND. 

For a given clustering of the data, increasing the selectivity of the 
predicate in general decreases the benefit. However, the rate at 
which the benefit decreases is again dependent on the specific 
clustering. Thus, the benefit for SC decreases much more slightly 
than that for WC and IND. For example, for the IND case, any set 
of k-records would have the same benefit and this would decrease 
linearly with increasing selectivity. In such cases, one can expect 
only relatively small benefits in the restart for small values of k. 

SC represents the best-case scenario as the correlation between 
the l_receiptdate and the l_shipdate attributes ensures that the 
skip-scan operator yields maximum benefits even with increasing 
selectivity.  

Thus, bounded checkpointing yields maximum benefit when 
either selectivity is low or there is a strong correlation between 
predicate column and the clustering column. 

5.3 Evaluation on TPC-H Queries 
One important factor is the overheads imposed by our techniques. 
As mentioned in Section 2.3, this has two components. One is the 
stop-response-time, which is negligible for small values of k (we 
typically set it so that all records we save can be accommodated 
in a few pages). The other important parameter is the monitoring 
overheads incurred in the initial run (when the query is not 
terminated). For the TPC-H workload, we observe that for most of 
the queries the overheads are within 3% of the original query 
execution times.  

Figure 10 shows the PWS for the TPC-H workload when the 
queries are terminated at the 50% point. We set the budget k to be 
250 (If we assume a database page size of 8KB and an average 
size of an intermediate record as 32 bytes, 250 records can fit in a 
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single page). The plots in the Figure 10 show that we can save a 
significant portion of the work done in the initial run by utilizing 
only a small amount of state. Among the 17 queries in the 
workload, the PWS is 40% or more for nearly half the queries in 
the workload.  
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Figure 10. TPCH Queries (Termination at 50%). 

Query 17 represents a case where the PWS is 100%; this is 
because the predicates are very selective and subtree caching is 
applicable. On the other hand, consider a scheme for bounded 
checkpointing that relies only on subtree caching, that is it saves 
all intermediate records, as long as the number of records does not 
exceed k. Such a scheme would only be applicable for Query 17 
in the workload, while the techniques proposed in this paper yield 
significant benefits for a much larger number of queries. 

For Queries 1 and 3, we get practically no benefit. Query 3 selects 
most of the records in lineitem which are evenly spaced out on 
disk. Thus saving just 250 records does not yield substantial 
benefits.  

For Query 1, saving and reusing the partial sums corresponding to 
the aggregates would have resulted in significant benefit. In our 
prototype we focus on saving intermediate results and do not save 
any state that is internal to operators. We discuss how to 
incorporate partial operator state in Section 6. 

5.4 Algorithm Choice for Multiple Pipelines 
In Section 4.2, we presented three algorithms for the case of 
Multiple Pipelines (Current-Pipeline, Max-Pipeline and Merge-
Pipeline). We first study the Current-Pipeline algorithm. Among 
the 17 queries executed for nearly half of the queries, Max-
Pipeline and Merge-Pipeline yield higher benefit than Current-
Pipeline, and for the remaining queries, the benefits yielded by all 
algorithms are equal. In fact, it can be formally shown that the 
Current-Pipeline algorithm yields at most the same benefit as 
either of the Max-Pipeline and Merge-Pipeline algorithms. 
Moreover, the benefits yielded by the Current-Pipeline algorithm 
significantly vary with the termination point. Figure 11 illustrates 
how the PWS varies as a function of when the query is terminated 
for the Current-Pipeline algorithm. For instance, if Query 10 (a 
join of 4 relations) is stopped at 60%, the PWS is around 25%. 
But if the same query were stopped at 80%, there are practically 
no benefits.  
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Figure 11. Current-Pipeline Approach. 
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Figure 12. Multi-Pipeline Algorithms. 

In Figure 12, we illustrate for Query 10 how the Max-Pipeline 
and the Merge-Pipeline algorithm compare to the Current-
Pipeline algorithm. For this query, the best pipeline to skip is the 
one in which the source node is the Lineitem table. Both the Max-
Pipeline and Merge-Pipeline algorithm are able to identify this 
unlike the Current-Pipeline algorithm. For this query, the 
pipelines executed after the 70% point are not good candidates for 
utilizing the skip-scan operator. In this case the savings obtained 
by using the Max-Pipeline and the Merge-Pipeline algorithm are 
the same. 

We now compare the Max-Pipeline and Merge-Pipeline 
algorithms. Recall that unlike the Max-Pipeline algorithm, the 
Merge-Pipeline algorithm can insert the skip-scan operator at 
multiple pipelines. In general for TPCH queries, most of the 
benefit is obtained by performing a skip-scan over the lineitem 
table. As a result, we find that the Max-Pipeline algorithm 
performs as well as the Merge-Pipeline algorithm for many 
queries. But there are cases where utilizing the skip-scan operator 
at multiple pipelines is important. For instance, Figure 13 shows 
how the Merge-Pipeline algorithm outperforms the Max-pipeline 
algorithm for TPCH Query 21. Query 21 involves self-joins of the 
Lineitem table and the Merge-Pipeline algorithm can utilize the 
skip functionality on multiple scans of the Lineitem table. Notice 
that the savings are equal until the first pipeline finishes execution 
(at around 50%).  

742



Max-Pipeline vs Merge-Pipeline (Query 21)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Point of Termination

P
W

S MAX-Pipeline 

Merge-Pipeline 

 

Figure 13. Max-Pipeline vs. Merge-Pipeline 

5.5 Effect of Budget k  
In Figure 14, we study how the PWS varies as a function of k. We 
show results for k = 1000, 5000 and 50000. We use a termination 
point of 50%. While it is clear that the PWS increases 
monotonically with k, the plots indicate that this is not necessarily 
linear. Depending on the clustering of the data, PWS can grow 
sub-linearly with k. Once k is large enough for subtree caching, 
the benefits do not necessarily increase proportionately. Further, 
as shown by Figure 5, the data clustering could be such that 
saving a small number of records clustered together yields most of 
the benefit after which we obtain diminishing returns as k 
increases. For nearly half the queries, we find that the PWS is 
almost the same for all the above values of k.  
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Figure 14. PWS as a function of k. 

Of course, in general with higher values of k, the PWS increases. 
For instance, for the K=50000 case, we can save 100% of the 
work for 5 of the queries (compared to the single query in Figure 
10). These results (in conjunction with those in Section 5.3) show 
that if we carefully choose the set of intermediate records to save, 
even a small amount of records can result in substantial benefits.  

5.6 Evaluation on SkyServer Database 
In this section, we study the effectiveness of bounded 
checkpointing on real data. We use the publicly available personal 
edition of the SkyServer database [18]. The query workload 
consists of 32 queries. Figure 15 shows the PWS for all the long 
running queries from this workload (the termination point is 
50%). 
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Figure 15. Evaluation on SkyServer Database 

The results show that bounded checkpointing is often useful for 
real workloads; for nearly half of the queries the PWS is 40% or 
more. An important point to note is that queries 22 and 32 are 
single pipeline queries with no group-by or aggregations that 
select most of the records in the table. For such queries, bounded 
checkpointing is unlikely to yield significant benefit. 

5.7 Summary 
We summarize the experimental conclusions below 

• There are many cases where bounded checkpointing is 
useful (selective predicates, sub-tree caching or 
correlation between the predicates and the clustering 
column). Such cases are fairly common in the real and 
benchmark data sets used in our experiments. 

• Saving even a small amount of records can result in 
substantial savings in the restart run if the records are 
chosen carefully. 

• Keeping track of previous pipelines while computing 
the right set of records to save is important, for instance 
the Merge-Pipeline algorithm is much better than the 
Current-Pipeline algorithm. 

• The monitoring overheads imposed by our algorithms 
during the initial run are low. For most of the queries in 
the TPCH suite, the overheads are within 3% of the 
query execution times. 

6. Discussion and Future Work 
Thus far in this paper, we have introduced a space of restart plans 
based on the skip-scan operator. Our experiments reported in 
Section 5 show that we can obtain significant benefits by using 
the framework we have proposed. In this section, we address 
some open issues and while we defer a complete solution to future 
work, we propose possible extensions of our techniques wherever 
applicable. 

Group by-Aggregation 

One of the most common operations performed in long-running 
decision support queries is group-by and aggregation. The 
algorithms proposed in this paper handle this operation like any 
other operation. For example, if the number of groups output is 
small then subtree caching results in the entire output being saved 
and reused when the query is restarted. Indeed, we obtain 
significant benefits for the TPC-H benchmark queries as 
documented in Section 5.  
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However, we have an opportunity to do even better for group-by-
aggregation in certain cases by saving partial aggregates. We 
explain this with an example of streaming aggregation. Consider a 
query that computes the expression sum (l_extendedprice) over 
the Lineitem table. During query execution, the streaming 
aggregation operator maintains a partial sum as a part of its 
internal state. We have an opportunity here to persist the partial 
sum when the query is stopped, and during the restart, restore the 
internal state of aggregate operator with the saved partial sum and 
skip the part of the table that contributed to the partial sum. This 
example generalizes to the case of group-by aggregation. Note 
that saving partial aggregates could potentially let us skip the 
entire work done in the pipeline in the initial run. (For example, 
TPCH Query 1 as discussed in Section 5.3). 

Updates 

Our main focus in this paper is on long-running decision support 
queries run on data warehouses. Data warehouses are typically 
maintained periodically by running a batch of updates. Therefore, 
it is not unreasonable to assume that the database is static as 
queries are run. Indeed, the discussion on equivalence of the 
restarted plan and the original plan presented in Section 3.4 
assumes that the database is not updated between the two runs.  

We now discuss how the techniques presented in this paper can be 
adapted to the case where the database can change as the query is 
executed. Whenever a query plan (involving multiple pipelines) is 
stopped, there is a set of pipelines which have not yet started 
execution. Note that if all the relations updated belong to this set 
and are not part of any other pipeline, the restart plan is 
guaranteed to be equivalent to the original plan. This observation 
can be used to check if the restart plan remains equivalent under 
updates.  

We can obtain a more comprehensive way of handling updates as 
follows. Conceptually, we can think of the saved intermediate 
results as a materialized view and maintain them in the presence 
of updates by leveraging the extensive prior work on maintenance 
of materialized views [8].  We note however that unlike 
materialized views, the state we persist is captured using system 
generated rid values that are not visible at the SQL level. We 
would need to extend the database system to introduce the notion 
of system materialized views which are not necessarily visible in 
SQL. 

Hash Spills 

One important extension to the bounded query checkpointing 
problem is to enable it to handle disk spills [7]. We need 
additional logic to check equivalence of restart plans in the 
presence of hash spills. Consider an example Hash Join where the 
build relation is too large to fit in main memory. In this case, the 
join spills one or more hash partitions to disk. Assume the query 
execution is in the probe phase and we are computing the best-k 
records to save at the output of the join. A probe side source 
record for which no match is found in any of the in-memory 
partitions cannot be skipped since we require that all the result 
records produced by any skipped source record must be saved.  

While a complete solution for handling spills can be complex, we 
could proceed by using two straightforward methods. One is to 
enhance the FindSkippable method to incorporate spills. Thus any 
window of records that has records that hash to a spilled partition 
is regarded as not skippable. An alternate approach is to disallow 

saving results produced by operator nodes that can potentially 
spill, such as hash join and hash-based group-by. Thus, for the 
example above, we only save the results produced by the filter 
below the hash join and use this to skip appropriately.  

Resumption with Re-Optimization 

We have assumed in the paper that the query plan used when the 
query is restarted is exactly the same plan used in the initial run, 
modulo replacing table scans with skip-scans. However, since we 
could potentially be skipping large portions of the base tables, we 
could obtain additional benefits by re-invoking the optimizer 
when the query is restarted. For example, suppose that we are 
skipping records on the probe side of a hash join. During restart, 
fewer records are read from the probe-side table so that it may be 
more efficient to perform an index nested loop join.  

7. RELATED WORK 
Cursors are a common interface for interacting with SQL queries 
and can be used to iterate over the result of a query. The 
execution can be paused merely by holding on to the current 
cursor position. An alternate approach to pausing execution is to 
simply suspend the query execution thread. Neither of these 
approaches releases the resources consumed by the query, which 
is the goal in this paper. 

There has been prior work on pausing and resuming 
dataflows[19][20]. The main technical difference in our approach 
is that we focus on regenerating all the results (vs. generating only 
the remaining results) and we use a bound on the amount of state 
saved. We note that our techniques can be beneficial in the 
context of “pause and resume” implementations for pipelines 
whose root is a blocking operator such as a build phase of a 
hybrid hash join. Further, there are many scenarios where the 
stop-restart model of execution is more appropriate. For example, 
a large class of 3-tier database applications is architected to be 
stateless – in the event of failures (application crashes, connection 
or SetQueryTimeOut in ODBC), they simply start afresh.  

The paradigm of saving and reusing intermediate results has been 
studied in various settings in prior work including view 
management [8], semantic caching [5][9][10], and dynamic query 
optimization [1][6][15]. We now distinguish our paper from each 
of these areas.  

Recall that a stop-restart execution consists of an initial run and a 
restart run. We determine what to save and its corresponding 
restart plan during the initial run and utilize this when the query is 
restarted. Prior work on answering queries using views and 
utilizing semantic caches is applicable to the restart phase where 
we utilize the state saved to save computation. Our main focus in 
this paper is on the bounded query checkpointing problem that 
corresponds to the initial run of the query. This is more related to 
the view selection problem [1][11][12][16]. The main differences 
in our setting are that (1) we have a tight bound on the amount of 
state we are allowed to save, in contrast with a bound based on 
estimated size, (2) the criterion that determines what we save is 
the restart of the same query as opposed to a given workload of 
queries, and (3) ours is an online problem – we have to maintain a 
restart plan as the query execution proceeds.  

Techniques for dynamic query re-optimization [1][6][15] attempt 
to detect sub-optimal plans during query execution and possibly 
re-use any intermediate results generated to re-compute the new 
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optimal plan. We differ in that (1) if the currently executing plan 
is already optimal, then query re-optimization is never invoked. 
However, a plan (that is optimal) can still be chosen as a victim to 
be terminated and restarted, (2) dynamic query re-optimization 
techniques do not typically constrain the number of intermediate 
results to save and reuse, and (3) queries are typically re-
optimized by invoking the query optimizer with updated 
information. In contrast, we compute a restart plan online as the 
query executes. 

8. CONCLUSIONS  
Resource contention among multiple long running decision 
support queries could require the termination of one or more 
queries in current systems. However, the work done by these 
queries is lost even if they were close to completion. In this paper, 
we outlined a Stop-and-Restart style query execution that can 
address this problem. In particular, we looked at the bounded 
query checkpointing problem and presented algorithms for the 
same. Our experiments on a prototype system built by modifying 
Microsoft SQL Server 2005 indicate that our algorithms can be an 
interesting alternative to outright termination of queries. For many 
of the queries in the TPC-H suite, we could provide a significant 
benefit for the restart by only saving a small number of 
intermediate records. 
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