
Modeling and Querying
Vague Spatial Objects Using Shapelets

Daniel Zinn
Dept. of Computer Science

University of California, Davis
zinn@cs.ucdavis.edu

Jim Bosch
Dept. of Physics

University of California, Davis
jbosch@physics.ucdavis.edu

Michael Gertz
Dept. of Computer Science

University of California, Davis
gertz@cs.ucdavis.edu

ABSTRACT
Research in modeling and querying spatial data has primar-
ily focused on traditional “crisp” spatial objects with exact
location and spatial extent. More recent work, however, has
begun to address the need for spatial data types describ-
ing spatial phenomena that cannot be modeled by objects
having sharp boundaries. Other work has focused on point
objects whose location is not precisely known and is typi-
cally described using a probability distribution.

In this paper, we present a new technique for modeling
and querying vague spatial objects. Using shapelets, an
image decomposition technique developed in astronomy, as
base data type, we introduce a comprehensive set of low-
level operations that provide building blocks for versatile
high-level operations on vague spatial objects. In addition,
we describe an implementation of this data model as an ex-
tension to PostgreSQL, including an indexing technique for
shapelet objects. Unlike existing techniques for modeling
and querying vague or fuzzy data, our approach is optimized
for localized, smoothly varying spatial objects, and as such
is more suitable for many real-world datasets.

1. INTRODUCTION

1.1 Motivation
Spatial database systems are used to store, maintain, and

process data that has an associated location and/or physi-
cal extent. Most work has focused on traditionally distinct
vector and field data types. The former associates precise
geometric objects, such as points, lines, and polygons, with
rows in a database, while the latter is generally approached
using raster image techniques.

Many spatial objects blur the line between the two, how-
ever; some regions do not have crisply-defined borders that
can be mapped easily to polygons. Many types of demo-
graphic regions, such as language, cultural, or even histor-
ical regions clearly fall into this category, as do ecological
regions such as animal habitats. Likewise, many fields are

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

localized and have metadata that should be associated with
distinct objects, such as agricultural chemical applications,
sensor coverage maps, and vegetation levels. Together, mod-
eling such real-world phenomena motivates a new data type
for spatial databases to describe these vague spatial objects.
Other terms employed in the literature include uncertain or
fuzzy regions. We will use vague to refer to the entire cat-
egory, and reserve fuzzy regions to refer to a common and
well-developed subclass.

Most work on vague spatial objects to date has focused on
the definition of an algebra using fuzzy set theory [1, 8, 11,
15], which generalizes the data model for standard vector-
based crisp regions. These fuzzy regions associate with each
object a field, the membership function, which is one in re-
gions inside the object, zero outside the object, and between
zero and one in the fuzzy boundaries. An implementation
based on contours of polygons is usually assumed in such
works, though it appears no such implementation exists to
date. Note that the algebra is based on a normalization of
the maximum value of the field to unity; no point can be-
long more than 100% to a given object. The integral of the
membership function is generally considered unimportant,
or at least secondary.

Another important way of quantifying the uncertainty or
vagueness of a spatial object is by mapping it to a proba-
bility density function (c.f. [5, 17]). This may represent the
probability of finding a certain object at various points in
space. In this case, it is the integral of the field over all space
that is normalized to one, and while the location of the peak
may be important (being the mode of the distribution), the
probability value at that point is not. In addition, one al-
ways integrates over some region to calculate probabilities
rather than simply evaluating the function at a point.

Each of these two normalization schemes – maximum-
normalization and integral-normalization – has a fairly well-
defined set of high-level operations that generalize the most
familiar operations for standard, crisp spatial data, ranging
from topological operations such as intersection and over-
lap to metric operations such as centroid and width. For the
maximum-normalization scheme, this is the algebra devel-
oped by Schneider and others [1, 8, 11, 15], and for integral-
normalization, the standard laws of probability theory ap-
ply. While a complete discussion is beyond the scope of this
paper, Section 2 includes a brief review and comparison of
these operations.

First, however, it is important to note that most vague
spatial objects do not clearly fall into one of these cate-
gories, though they can still have quantifiable fields associ-

567

ated with them. Rainfall or windspeed can define the “lo-
cation” of a tropical storm, just as a galaxy can be defined
by its surface brightness, and a city or animal habitat can
be defined by its population density. While many fields are
not at all localized and are more appropriately dealt with
using traditional raster image methods, many others (such
as those mentioned above) are strongly localized, and it is
often useful to associate a distinct field with each object.
Furthermore, it is often useful to ask questions that involve
generalizations of familiar operations on spatial data, such
as “what is the radius of this hurricane?”, “what is the cen-
ter of this city?”, “how much do these galaxies overlap?”,
or “what is the intersection of these two species’ habitats?”.
To address these questions, it is necessary to impose a nor-
malization scheme. Which scheme to choose depends on the
data and the questions being asked, but in many cases the
choice is somewhat arbitrary, and either scheme will work
equally well. In others it will be clearly ideal to have both
available and to form some new, hybrid scheme.

The choice of either of the above schemes (or the choice
of a hybrid) thus amounts to a choice about how to gen-
eralize standard, non-vague operations on spatial data into
operations appropriate for vague data. For each non-vague
operation, such a choice defines a corresponding field opera-
tion, whether that field represents the membership function
of a fuzzy region, a probability distribution, or something
else entirely.

1.2 Contributions
Rather than representing vague spatial objects using con-

tours, or the other obvious choice, raster images, we present
a new approach. Our approach centers around a new data
type, called shapelet, which is based on an image decompo-
sition technique developed in astronomy [13]. By examining
the operator definitions for both fuzzy regions and probabil-
ity distributions, we develop a comprehensive set of low-level
field operations on shapelets that support a set of “core”
high-level operators on vague spatial objects for both nor-
malization schemes. The operations include standard topo-
logical operations (intersection, union, and overlap), metric
operations (area, width/height, and centroid), and geomet-
ric transforms (scale, center, translate, and rotate).

We present an implementation of this new technique for
modeling and querying vague spatial objects in PostgreSQL.
Based on a new shapelet column type, we illustrate the im-
plementation of low-level field operations and a set of high-
level “vague spatial object” operations, realized as easy-to-
use stored procedures that utilize the low-level operations.
Using real-world astronomy data, we provide sample queries
that demonstrate the versatility of this technique. In addi-
tion, we describe an indexing technique that uses the R-tree
implementation in PostgreSQL for threshold-based indexing
of shapelets and significantly improves query performance.

The paper is organized as follows. In Section 2, we “trans-
late” the high-level operators defined for fuzzy regions and
probability distributions into a set of low-level field opera-
tions. In Section 3, we describe the mathematical details
of shapelets that allow us to realize these low-level oper-
ations. Section 4 details our implementation framework in
PostgreSQL and an experimental evaluation of the proposed
model using different examples. We address related and fu-
ture work in Section 5 and Section 6, respectively.

2. CORE OPERATIONS AND LOW LEVEL
COUNTERPARTS

By focusing on the most “pure” examples of the two nor-
malization schemes described above, fuzzy regions and spa-
tial probability distributions, and selecting a set of “core”
operations on traditional spatial data to be generalized, it is
possible to define a relatively small set of low-level field op-
erations that support a much wider range of both high-level
operations and types of data. These low-level operators can
then be used as building blocks for higher-level operators,
whose definitions may vary for different types of vague spa-
tial data. The definitions below are largely due to the work
of Schneider and collaborators [1, 8, 11, 15] or the common
results of probability theory. We refer the reader there for
motivations and proofs; our goal here is to combine these
definitions to produce a set of operations that includes both
cases, and is thus more generally applicable.

We make no claims about the ability of an implementation
that supports these low-level operations on localized fields to
meet all the high-level needs of any one type of vague spatial
data, or its ability to support a single high-level operation for
all types of data. However, an implementation that supports
the low-level operations defined below will likely support
most of the needs of most types of vague spatial data, and
it will hence be useful at the very least as a starting point
for more specialized implementations.

Below, we will use capital letters (F and G) to represent
high-level vague spatial objects and corresponding lowercase
letters (f(x, y) and g(x, y)) to refer to their fields.

A summary of our core operations and the “translations”
described below is given in Fig. 1.

Fuzzy Regions / Maximum
Normalized Data

Probability Distributions /
IntegralNormalized Data

Topological Functions
Intersection, Union,
Overlap, Point Queries,
Window Queries

Metric Functions
Centroid, Height/Width,
Area

Geometric Transforms

Pointwise minimum/maximum Pointwise arithmetic

Global minimum/maximum

Valuebased contours Integralbased contours

Integral Moments

Rotation, Translation, Scale

Pointwise evaluation
Integrals

Figure 1: Core operations on fuzzy regions and
probability distributions and their low-level field
counterparts.

2.1 Topological Operations
While many topological operations are defined for point-,

line-, and polygon-based data, the most important ones for
standard two-dimensional vector objects are intersection and
union. In addition, the predicate of “whether the intersec-
tion exists”, which we will call overlap, is also often quite
useful in its own right, even when the intersection object
itself may have no physical meaning. For vague data, one
can imagine either a Boolean-valued or real-valued overlap
function. Because the former merely involves comparing the
latter to some threshold value, we will define the overlap as
a real-valued function for vague data.

For fuzzy regions, the generalization of intersection and

568

union follows the generalization of standard set theory to
fuzzy set theory, and require operations that take the point-
wise minimum or maximum of two fields.

F ∩G := min{f(x, y), g(x, y)} (1)

F ∪G := max{f(x, y), g(x, y)} (2)

For probability distributions, the intersection is just the
joint probability, which for independent distributions is just
their product:

F ∩G := f(x, y)g(x, y) (3)

The union operation (the probability of F or G) is tradition-
ally defined as:

F ∪G := f(x, y) + g(x, y)− f(x, y)g(x, y) (4)

Given an intersection field, one typically defines the over-
lap for fuzzy regions as the global maximum of the intersec-
tion field. For probability distributions, one computes the
integral of the intersection field over all space.

f(x)

g(x)

intersection

union

[min(f,g)] - [f·g]

[f+g-f·g] - [max(f,g)]

0

 0.2

 0.4

 0.6

 0.8

1

Figure 2: Comparison of min/max definitions of
intersection and union with arithmetic definitions
of the same for a one-dimensional field.

It is also worth noting that the probabilistic definitions of
intersection and union, if applied to maximum-normalized
fields, yield a very good approximation to the min/max def-
initions for these operations, as shown in Fig. 2. Most im-
portantly, they preserve this normalization, as the results
are still bounded by zero and one if the inputs are. The
converse is not true; pointwise min/max operations do not
preserve the total integral. Also note that given smooth
data, the min/max definitions can produce non-smooth in-
tersections and unions, while the arithmetic definitions pre-
serve the smoothness. This may be an important hint about
the best choice of a normalization scheme, at least with re-
gards to topological operations for data that is intrinsically
smooth.

It can also be useful to define topological operations be-
tween vague spatial objects and traditional regions. We can
simply define a Boolean-valued field for the traditional re-
gion and proceed as above in most cases. But the overlap
is more simply viewed as finding a maximum in a window
for fuzzy regions, or integrating in a window for probabili-
ties. For rectangle-shaped traditional regions, this overlap
also serves as the generalization of the ubiquitous window
query, which, for vague spatial data, asks “To what degree
is an object inside a rectangle?” For fuzzy regions, opera-
tions between vague regions and points are also important.

It is often useful to ask “to what degree does a point belong
to a fuzzy region?”. This, of course, simply requires being
able to evaluate the field at a point.

The definition of intersection, union, and overlap for data
that is non-normalized (like the storms, cities, or galax-
ies mentioned above) is more problematic, but most logical
choices unsurprisingly involve one of the above definitions
with a temporary normalization. Instead of normalizing the
fields themselves, one could define a normalized overlap op-
erator, for instance, as

overlap(F, G) :=

RR
f(x, y) g(x, y)dx dy

(
RR

f(x, y)dx dy)(
RR

g(x, y)dx dy)
(5)

or by similarly dividing the fuzzy region definition of overlap
by the maximum value of f or g.1 There are other possible
choices. One could define an asymmetric overlap operation
by dividing by the integral of the first object squared, for
instance. Most reasonable operators on unnormalized data
will follow the pattern of the above examples: they will be
normalizing versions of the fuzzy region or probabilistic op-
erations and will simply require an additional min/max op-
eration or integral to compute. The low-level operations
required, in most cases, remain the same:

• For fuzzy regions, pointwise min/max operations and
global min/max operations.

• For probability distributions, pointwise arithmetic and
definite integrals (both over all space and over some
finite region).

2.2 Metric Operations
One straightforward way to generalize metric quantities

such as width or area is to define some threshold-based con-
tour and measure that. For fuzzy regions, this is naturally
a value threshold, producing a traditional crisp region such
that the value of the field on the contour is equal to the
threshold. For probability distributions, the more natural
choice is a confidence contour, a region that encloses some
fraction of the total integral. Determining such contours
from images or through numerical sampling of a function
is a large subject in its own right [6], and represents one
of the more complicated low-level operations desired for a
representation of vague objects.

However, a less versatile but simpler approach to met-
ric operations exists. It is applicable to both fuzzy regions
and probability distributions, though its use is more famil-
iar with regard to the latter. In a given direction, say along
the x-axis, we can define a root-mean-square (rms) width, or
standard deviation, as the square root of the second integral
moment about the center:

width(F) :=

»RR
x2f(x, y)dx dyRR
f(x, y)dx dy

–1/2

(6)

To simplify notation (and computation) it is assumed that
the object is centered on the origin; if it is not, the true
centroid can be found from the first integral moment (the
mean), and the object translated to the origin. By rotating
the coordinate system (or by some equivalent operation),
we can find an rms width in any direction, which, together
with the centroid, defines a crisp region whose area and other

1Here, and throughout the paper, we will omit the limits of
integration if the integration is over all space.

569

properties provide a meaningful definition of the correspond-
ing metric operations for the vague object.

These definitions of metric operations add to our set of
desired low-level operations:

• contour construction

• integral moments (or at least means and standard de-
viations)

2.3 Geometric Transforms
A third set of requirements for a field representation is

provided by the common need for standard geometric trans-
forms, such as rotation, scaling, and translation. At the
very least, these are needed to support the vast number of
map projections and coordinate systems spatial databases
are expected to handle [20]. In addition, geometric trans-
forms may provide important pieces of other operators, such
as the rotations and translations desired for moment-based
metric operations mentioned above.

As long as individual objects are small compared with
any curvature in a coordinate system (most often the ra-
dius of the Earth), support for affine transforms (those that
preserve parallel lines) will often suffice, as we can approx-
imate a full projective transform as a projective transform
on the centroid and an affine transform on the object itself.
An affine transform in two dimensions can be written as a
matrix of the form 24 a11 a12 tx

a21 a22 ty

0 0 1

35 (7)

which acts on a coordinate vector [x y 1]. The tx and ty

elements are purely associated with the translation part of
the transform. Conveniently, a singular value decomposi-
tion of the two-by-two matrix aij yields a rotation matrix,
a diagonal scaling matrix, and another rotation matrix. To
represent the full set of affine transforms for our field, then,
it is sufficient to be able to rotate, scale, and translate.

While the definitions of most geometric transforms do not
depend on the normalization scheme, the scaling operator
does. When changing the physical size of a field, one can
choose to either preserve the value of the field at individual
points, or to preserve the total integral of the field. The
former is clearly appropriate for maximum-normalized data,
and the latter is clearly appropriate for integral-normalized
data.

2.4 Representations of Localized Fields
A full analysis and comparison of the many ways of repre-

senting a localized field is a huge topic in its own right, and
we will not attempt to do it justice here. To motivate our
new technique, however, we will present a very rudimentary
survey of two other proposed approaches.

A standard raster image represents a field very well in
some respects, but it is limited to rectangular regions and is
not as efficient for smooth data. Certainly all of the above
low-level operations are well understood for raster images,
and their computational and storage complexity scale with
the number of pixels.

A representation type often assumed in the literature is
that of contour polygons, where a set of standard, “crisp” re-
gions represent different levels of a fuzzy region [15]. In this
case, the above low-level operations can be reduced to simi-
lar well-understood operations on polygons, but this may be

a computationally complex, if conceptually straightforward,
task. In addition, contour representations are also ineffi-
cient for inherently smooth data. Most operations here will
scale with the total number of vertices, though even with
this scaling some operations (such as contour-finding) are
clearly easier than for image data, regardless of the number
of vertices.

A better choice for smooth data, and one we explore fur-
ther here, is the use of generalized analytic functions that
are represented by their series expansions. That is, a func-
tion f is represented by the coefficients an of its expansion
onto a certain set of “basis functions” φn:

f(x, y) =

∞X
n=0

anφn(x, y) (8)

In practice, this decomposition is carried out with a finite set
of coefficients an, so the challenge is to determine a suitable
basis φn that allows the data to be approximated well by
only a few elements in the above sum. Most operations will
then scale with the number of coefficients.

Both Fourier transforms and wavelet transforms are ex-
amples of this technique, and they have been shown to be
extremely useful for many image processing tasks that are
related to the low-level field operations mentioned above.
Fourier transforms, which use sine and cosine functions as
a basis, are not localized, making them a poor choice for
localized objects. Wavelets, which form a basis by scal-
ing and shifting an object with an otherwise fixed shape,
transform N -dimensional images into a 2N -dimensional co-
efficient space (for a review of wavelet techniques see [12]).
The definition of geometric transforms in this space presents
a difficult obstacle. An alternative, which we will adopt here,
is shapelets, a decomposition technique that defines a set of
localized basis functions with a single scale and location but
varying shapes.

Figure 3 depicts chosen “original” data and approxima-
tions using the different representations qualitatively. The
quantitative deviations from the original, high resolution,
images are shown in Fig. 4. The polygon error values are
admittedly less than optimal, as we could not find a vertex-
limited contour algorithm to create the “best fit” polygons.
We instead relied on a mostly heuristic reduction of vertices
from a more complete contour. Note that the polygon and
image representations tend to discretize (in different ways)
smooth objects, while the shapelet method (discussed exten-
sively below) blurs sharp objects. While the Shapelet rep-
resentation is unsurprisingly good for the Gaussian image,
it also outperforms the other representations in many other
respects, which is particularly remarkable considering that
the third and fourth images were intended to be more ideal
for the image and polygon representations, respectively.

3. REPRESENTING LOCALIZED FIELDS
WITH SHAPELETS

The shapelet basis can be seen as a set of functions that
“perturb” the standard Gaussian function (also known as
the Normal distribution in statistics). The first term in
the decomposition is the Gaussian function itself, and the
higher-order terms involve products of the Gaussian with
a special set of polynomials. Because of the “bell-shaped”
Gaussian curve factor, shapelets are excellent for represent-
ing localized objects (and ideal for nearly-Normal probabil-

570

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

Gaussian Mt. Shasta Freehand Polygons

(a) Average Squared Error

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

Gaussian Mt. Shasta Freehand Polygons

(b) Average Error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Gaussian Mt. Shasta Freehand Polygons

Shapelets
Polygons

Pixels

(c) Maximum Error

Figure 4: Approximation error for sample objects in different representation schemes.

(a) Original (b) Polygons (c) Pixels (d) Shapelet

Figure 3: Finite representations for the objects
shown in the first column (from the top: an ellip-
tical Gaussian; an elevation map of Mount Shasta,
California; and two arbitrary, hand-drawn images).
Each representation is limited to the same amount
of memory (36 floating-point values).

ity distributions). However, the special properties of the
polynomials, known as Hermite polynomials [2], allow any
function to be represented using a shapelet expansion.

In one dimension, the nth-order shapelet basis function
is:

φn(x) =
h
2nπ1/2n!

i−1/2

Hn(x)e−
x2
2 , (9)

where Hn(x) is the nth Hermite polynomial. These func-
tions were originally developed as the solution to an impor-
tant differential equation in physics, the quantum simple
harmonic oscillator. The expansion was applied to astro-
nomical image processing by Refregier [13] and Bernstein
and Jarvis [3], and developed further by many others [4, 10,
14]. In most cases we will develop our operations by building
on work from one or more of these sources. While deriva-
tions and proofs for the results we quote may be found in
these papers, it should be stressed that it is not necessary for
the reader to be informed of all the mathematical reasoning
in order to understand how we make use of the remarkable
properties of the shapelet basis.

The above basis functions represent an expansion around
the origin with a scale of one, and can be parameterized
to include both an offset and a scale. The inclusion of an

offset is trivial, and we will generally not include it in our
formulae to simplify the notation. We will often explicitly
include a scale factor β, however, as it also appears in the
normalization factor at the beginning:

φn(x|β) =
h
2nπ1/2βn!

i−1/2

Hn(x/β)e
− x2

2β2 , (10)

We can form a set of two-dimensional basis functions simply
as a tensor product of one-dimensional basis functions:

Bnxny (x, y|β) = φnx(x|β) φny (y|β) (11)

We often will use a single two-dimensional index that runs
over all possible combinations of nx and ny (essentially flat-
tening a matrix of coefficients into a vector). Because the
basis functions are separable in x and y, at other times we
will often give formulae for one-dimensional operators only;
extending to two dimensions simply involves operating on x
and y separately.

Figure 5: Shapelet basis functions Bnx,ny .

The first few two-dimensional basis functions with their
nx and ny values are show in Fig. 5. These functions are
complete, meaning that any arbitrary function can be de-
scribed by an infinite sum of shapelet components. The
value of each coefficient is remarkably easy to determine. To
expand some function f(x, y) onto a shapelet basis, yielding
some coefficients fi, we only need to integrate the product
of the function with each basis function:

fi =

ZZ
Bi(x, y|β)f(x, y)dx dy (12)

571

This does not necessarily mean that a good approximation
of an arbitrary function can be obtained with a relatively
small number of coefficients, but it is often the case. Even
more importantly, the basis is orthonormal :ZZ

Bn(x, y|β)Bm(x, y|β)dx dy = δnm , (13)

where δnm is the Kronecker delta, which is 1 if n = m and 0
otherwise (an identity matrix in tensor notation). In prac-
tice this feature means that any operation on shapelets can
be formulated as a linear algebra operation. If we have a field
F represented by its shapelet coefficients fi,

f(x, y) =
X

i

fiBi(x, y|β) , (14)

any operation on a single shapelet involves at most a ma-
trix multiplication and an addition of a constant. For some
operation that maps F to G, the form is

gj =
X

i

fiMij + Vj , (15)

where M and V are a matrix and a vector that define the
operation (in most cases, the vector V will be zero). Any
binary operation that maps (F, G) to H can similarly be
written as

hk =
X
i,j

figjTijk +
X

i

fiPik +
X

j

gjQjk + Rk (16)

Here, T is a three-dimensional matrix, which will often be
the only nonzero term in the calculation. To compute any
operation, then, all of the difficult work is in determining the
elements of these matrices and tensors. Finally, operations
that return scalars can be written simply as the dot product
of the shapelet vector and an operation vector Si:

a =
X

i

fiSi (17)

In many cases, these vectors and matrices (henceforth
collectively called simply tensors) can be calculated using
mathematical recursion relations, formulae that relate one
element of a tensor in a simple manner to the one or two
previous elements. Given the first element or two, then,
it is possible to compute in linear time (in the total size
of the tensor) the entire tensor. The Hermite polynomials
themselves can also be computed using recursion relations,
allowing a shapelet expansion to be evaluated at a point by
simply computing the value of the Hermite polynomial at
that point and plugging into (10) and (11). This is gener-
ally much faster than constructing the full polynomials.

While all of the low-level operations discussed above are
possible with shapelets, not all are particularly efficient.
Global min/max operations and contouring in particular are
complex problems. We will not address them further here,
except to note that these operations should still be faster
on shapelets than on images, because shapelets are differ-
entiable everywhere, an important feature for both mini-
mization/maximization and contouring algorithms. Point-
wise min/max operations are even more troublesome; these
operations are inherently non-smooth, while a finite shapelet
expansion necessarily involves some smoothing (and sharper
features require higher-order expansions). As shown in Fig. 2,
however, the arithmetic versions of topological operations
are essentially “smoothing approximations” to the pointwise

min/max definitions, so this deficiency is not as limiting as
it seems. In fact, using the arithmetic definition may be
more appropriate for inherently smooth data, even if it is
maximum-normalized.

Our current implementation, detailed in Section 4, is thus
best suited for integral-normalized objects, as we can sup-
port more of our “core” operators for these objects, though
we also support a number of operations on maximum-nor-
malized objects as well.

3.1 Pointwise Arithmetic and Overlap
To add or subtract two objects expanded onto a shapelet

basis, we simply need to add or subtract their shapelet co-
efficients. In the language of (16), this amounts to setting
P and Q to the identity matrix and all other terms to zero.
One complication is that the objects must first be expanded
onto bases with the same offset and scale factor. To do this,
we must translate and scale the objects from their original
coordinate systems to a new joint one (this further empha-
sizes the need for geometric transformations).

We must also be able to multiply shapelets to meet the
low-level requirements of topological operations. As this
result is not developed in previous works, we will derive it
here in one dimension; the two-dimensional multiplication
tensor is the outer product of the one-dimensional tensor
with itself.

If we multiply two objects F and G, and define H as the
result, at first we have a rather ugly product of sums:

h(x) =

 X
i

fiφi(x|α)

! X
j

gjφj(x|β)

!
(18)

To find the components hk, we can multiply both sides by
φk(x|γ) and integrate:

hk =

Z
h(x)φk(x|γ)dx =

X
ij

figkI
(3)
ijk , (19)

I
(3)
ijk(α, β, γ) =

ZZ
φi(x|α)φj(x|β)φk(x|γ)dx (20)

This triple integral tensor I(3) depends only on the scale
factors (note that it is T in the form of (16)), and will appear
as a key component in many binary operations. Its elements
can be computed in linear time using recursion relations, but
we refer the reader to Refregier and Bacon [14] for the details
of this calculation.

Note that the multiplication operation does not require
input objects or output objects to have the same scale pa-
rameter, but they are required to have the same offset (which
again can be accomplished by pre-transforming the objects).
If we need only to calculate an overlap (as defined as the
integral of the intersection), even this step is unnecessary.
Because all the integrals (both in the multiplication oper-
ation and in the overlap itself) are over all space, we can
assume one object is at the origin without loss of generality.
Of course, care should be taken to define the relative offset
appropriately with regard to its sign and which object is de-
fined to be at the origin. Again working in one dimension,
we can then write the full overlap operation between objects
with different scales and a relative offset x0 as:ZZ

f(x)g(x + x0)dx (21)

572

This operation is known as the cross-correlation function of
f and g. For overlap, we then only need to evaluate the
cross-correlation at the offset between two objects. While a
full proof is too lengthy to include here (see [21]), the three-
tensor Cijk that computes the cross-correlation (T in (16))
is just a slightly modified version of the triple-integral tensor
I(3), evaluated using the reciprocals of the scale factors.2

Cijk =
√

2π(−1)
3i+j+3k

2 I
(3)
ijk(α−1, β−1, γ−1) (22)

Without any geometric transforms, then, we can use (22)
and (16) to compute the coefficients of the cross-correlation,
and then simply evaluate it at the offset between the two
input objects.

The cross-correlation between two objects may be very
well approximated by its first shapelet term only (or perhaps
its first few terms); we then only need to evaluate the k =
0 terms of the tensor. For objects with many terms, this
is a potentially dramatic improvement, and it is a tactic
that may be worth exploring for other operators as well.
Determining error guarantees, however, is difficult, and we
will reserve a full discussion of this type of approximation
technique for a future paper.

3.2 Integral and Moment Operations
As noted above, the Hermite polynomials obey several re-

cursion relations. The two most important relations (which
may be taken as a definition of the Hermite polynomials)
are

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) (23)

and
dHn(x)

dx
= 2nHn−1(x) (24)

The first can be used to calculate the value of a basis func-
tion φn(x) at x with a complexity at most linear in n. The
second allows us to compute derivatives of the basis func-
tions, and together with integration by parts, allows us to
compute any integral or integral moment. These integrals
can be over any rectangular domain (including all space and
one-sided half-infinite domains). The detailed form of the
derived recursion relations for simple integrals is given in
[10], and we derive a recursion relation formula for general
integral moments in [21].

With the ability to calculate integrals and integral mo-
ments over all space, we can now support the moment-based
metric operations described in Section 2.2.

Note that these recursion relations allow us to compute,
for each basis function, the value of the integral or integral
moment; this defines the vector Si for these operations as
in (17). By computing this operation vector over a region
and taking the dot product with a coefficient vector, we
can compute any integral moment for any object in a given
rectangular, semi-infinite, or infinite region.

Image Input and Output
We can also define a similar scalar-operation vector Si that
computes the value of the object at a point by evaluating
(10) and (11) at that point. With a choice of whether we
wish to integrate over pixels as tiny rectangles or evaluate
the function at the center of each, we now have the neces-
sary ingredients to produce images from a shapelet repre-
sentation: we create a basis vector Si for each pixel and dot
2The triple integral tensor is zero unless i+ j +k is even, so
the correlation tensor is always real.

it with the coefficient vector to determine the pixel value. A
vector of vectors, of course, is just a matrix, so we have es-
sentially defined a matrix M that maps a vector of shapelet
coefficients to a vector of pixels–a raster image.

Computing shapelet components from a raster image is
then a traditional linear algebra least-squares problem; given
a basis matrix M and an image vector x, solve for the
shapelet vector f in

x = Mf (25)

where the number of pixels is larger than the number of
shapelet coefficients. For high resolution images and shape-
lets, this is a fairly expensive computation. However, the
optimization problem is essentially a linear algebra opti-
mization issue; a full discussion thereof goes beyond the
scope of this paper. Other methods of image-based input
exist as well and are discussed extensively in the astronomy
literature [4, 10, 13].

3.3 Geometric Operations
Because we have parameterized the scale and origins of

objects, a simple, “cheap” form of translation and uniform
scaling can be computed in constant time simply by chang-
ing these parameters. These can be used, for instance, for
changes in coordinate systems or map projections. For non-
uniform scalings (scaling differently in different directions),
however, or to translate or scale different objects to a com-
mon origin and/or scale factor, we must be able to scale and
translate by changing the shapelet coefficients themselves.

These finite geometric transformations are among the more
complex shapelet operations we will discuss, as they cannot
in general be computed using recursion relations. One can
compute simple matrices that define differential geometric
operators, or generators, which are valid for infinitesimal
rotations and translations (these are given in [13]). To com-
pute a matrix that defines a more useful finite transform
T from a generator R for an amount v (a rotation angle,
translation distance, etc.), we must compute a matrix expo-
nential:

T = eRv (26)

Matrix exponentiation is not as elementary as scalar expo-
nentiation, and is defined to involve an infinite number of
matrix multiplications:

eR =

∞X
n

Rn

n!
(27)

A solution to this problem is to diagonalize the matrix, an
expensive but well-studied problem in numerical linear al-
gebra. If U is the matrix that diagonalizes R, and D is the
corresponding diagonal form, the matrix exponential of R is

eR = UeDU−1 , (28)

where the exponential of D now involves only exponentiat-
ing its (diagonal) elements. This expensive diagonalization
procedure must be applied to the generator matrices only
once; we can then cache the matrices U , U−1, and D to
compute any finite transform with just a few matrix mul-
tiplications. This is the procedure used for both rotations
and translation operators.

A similar operation is possible for the scale geometric
transform, but it is easer to use a different tactic. Because
binary operations based on the triple-integral tensor I(3) do

573

not place any restrictions on the input scale factor, we can
use the cross-correlation function to perform a scaling oper-
ation.

The Dirac delta function δ(x) is defined as an infinitesi-
mally thin, infinitely tall peak with unit volume. It can be
represented well by a single-coefficient shapelet with a tiny
scale factor. By definition, the cross-correlation of any func-
tion with the Dirac delta function is the original function:Z

f(x′) δ(x′ + x) dx′ = f(x) (29)

By computing the cross-correlation operator with different
input and output scales, and cross-correlating our object
with the delta function, we can “rescale” our shapelet object
to a new scale factor parameterization. If we perform this
operation but do not change the scale parameter, the result
is to scale the object by βin/βout. As the cross-correlation
is separable in x and y, we can apply different scalings in
the different directions, and together with the rotation and
translation operators above, we can thus represent the full
set of affine transforms.

4. REALIZATION AND EVALUATION
Based on the concepts and techniques underlying low-level

and high level operations on shapelets discussed above, we
now present the implementation of our shapelet-based data
and query model in PostgreSQL. We built a C++ library
containing a shapelet class, which provides the backend for
the new PostgreSQL data type shapelet. A few functions
were also implemented temporarily in Python, using Post-
greSQL’s Python-based procedure language, but these will
be moved to the C++ library in the future. In this sec-
tion, we outline the key design of the C++ implementa-
tion and its integration into PostgreSQL, and discuss how
shapelets are indexed to significantly speed up certain types
of queries. We also present experiments that illustrate (1)
some shapelet representations for smooth objects, (2) the
usage of the shapelet type in PostgreSQL, and (3) perfor-
mance measurements for query operations we implemented.

4.1 Shapelet PostgreSQL Extension
The heart of the PostgreSQL extension is a C++ library

containing the main class Shapelet. C stubs around the
functionality of the C++ class are used to bind the library’s
functionality to PostgreSQL functions.

We chose the GNU Scientific Library (GSL) for perform-
ing expensive matrix multiplications and inversions. This
library is a sophisticated, well-tested, and optimized frame-
work for mathematical operations, and it supports different
backend libraries for matrix inversions.

We use a C struct data structure called RawShapelet as
data container. The definition is shown in Fig. 6. The
members beta, x, and y denote the scaling factor β and
the shapelet’s center position (x, y), respectively. As the
number of shapelet coefficients can vary from shapelet to
shapelet, this C struct has a variable size that is always
stored in size.3 All the shapelet coefficients are stored in a
double array, which starts at the member position data.

The C++ shapelet class is designed as a “user-friendly”
interface to the shapelet library. The class provides memory

3The convention to store the size in bytes in the first word
of the data structure is also used in PostgreSQL’s variable
sized data types.

1 typedef struct RawShapelet {
int size; double beta, x, y;

3 double data; // starting element for data array
} RawShapelet;

5 // Low-level data access methods
inline void setData(RawShapelet *s, int offs, double v)

7 { (&(s->data))[offs] = v; }

Figure 6: Definition of RawShapelet.

management for the shapelet’s data stored in a RawShapelet,
as well as routines for (1) input/output (ASCII String and
pixel images), (2) basic arithmetic operations (addition, mul-
tiplication etc.), (3) geometric transforms (moving, scaling,
rotation etc.), (4) integrals and convolutions, (5) changing
resolution (smoothing/resizing of the coefficient array), and
(6) determining minimal bounding boxes. Figure 7 shows
the signatures of all the operations we implemented.

Signature Description

In
pu

t/O
ut

pu
t serialized input

serialized output

G
et

/S
et get the center point

set the center point
get the scale factor
set the scale factor

In
fo

In
de

x a box that bounds the exterior integral
a box that bounds the exterior maximum
a box that bounds integral and maximum

A
ri

th
m

et
ic

multiple the field by a scalar
multiply(s,s,f,i):s

add(s,s):s
subtract(s,s):s
normalize(s):s set the integral over all space to one

To
po

lo
gi

ca
l

intersection(s,s):s

union(s,s):s

overlap(s,s):f arithmetic/integral overlap

G
eo

m
et

ri
c

Tr
an

sf
or

m
s scale(s,f,f,bl):s

rescale(s,f,i):s

recenter(s,p):s change the center without changing the field
translate(s,p):s “cheap” translation
rotate(s,f):s

importString(t):s
exportString(s):t
importPNG(t,p,f,i):s image input (filename, center, beta, nmax)
exportPNG(s,i,i,b,t) image output (shapelet,xpix,ypix,box,filename)
makeGaussian(p,f,f):s new singlecomponent Shapelet

(center,stdderivation, volume)
getCenter(s):p
setCenter(s,p)
getBeta(s):f
setBeta(s,f)

evalAtPoint(s,p):f value of the Shapelet field at a point
integrateBox(s,b):f integral of the Shapelet in a rectangular region
integrateAll(s):f integral of the Shapelet over all space
getIntBBox(s,f):b

getMaxBBox(s,f):b

getEpsBBox(s,f):b

multiplyScalar(s,f):s
pointwise multiplication (shapelet, shapelet,
beta, nmax)
pointwise addition
pointwise subtraction

arithmetic intersection (automatically recenters)
arithmetic union (automatically recenters and
rescales)

nonuniform scaling (shapelet, xscale, yscale,
preserve_total)

uniformScale(s,f,bl):s “cheap” uniform scaling (shapelet, scale,
preserve_total)
change beta and nmax without changing the
field

rotations about the Shapelet center (angles in
CCW radians)

s:Shapelet. t:Text. f:Float. p:Point. b:Box. i:Int. bl:Bool

Figure 7: Implemented Functions.

4.2 Experimental Evaluation
The experiments described in the following demonstrate

how shapelets are able to approximate various vague spatial
objects, followed by some sample operations on such objects.
For the selected operations, we give the SQL queries, the
execution times and figures of the input or output vague
spatial objects, if appropriate.

Representing Various Vague Spatial Objects
Figure 8 illustrates the effects when different spatial objects
are represented using a varying number of shapelet coeffi-

574

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 20 40 60 80 100 120

Number of Coefficients

S
smiley

2 boxes
box

smooth box
star

smooth smiley
radiation

(a) Average Squared Error

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120

Number of Coefficients

S
smiley

2 boxes
box

smooth box
star

smooth smiley
radiation

(b) Average Error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100 120

Number of Coefficients

(c) Maximum Error

Figure 9: Approximation error for sample objects versus number of shapelet coefficients.

Figure 8: Shapelet approximations with a varying
number of coefficients: original, 120, 55, 36, 15, 6,
and 1. Note that the last line is a 1/r2 distribution,
not a Gaussian.

cients. For each number of coefficients, the squared differ-
ence between the original and the representation is mini-
mized. The experiment shows that arbitrarily shaped ob-
jects can be approximated using shapelets. If only one coef-
ficient is used, the approximation is exactly a circular Gaus-
sian. However, as more coefficients (i.e., more basis func-
tions) are used, the approximations become more similar to
the original objects. It is furthermore evident that the repre-
sentations are naturally smooth: even for the crisp objects,
the sharp boundaries are smooth and start to sharpen again
with increasing resolution. This effect usually results in bet-
ter approximations for smooth objects than for crisp objects
using the same number of coefficients. In Fig. 9, the approx-
imation errors for each of the objects are given as a function
of the number of the shapelet coefficients used. As expected,
the approximation improves with an increasing number of
coefficients, and the already “smoothed” objects are gener-
ally better represented than those with sharp boundaries.
This is particularly significant for larger numbers of coef-
ficients, where the function plots in Fig. 9 clearly fall into
two classes based on their smoothness. Also note that mean
errors and maximum errors are quite reasonable, although

the actual quantity minimized in the shapelet construction
is the mean squared error.

Performance and Sample Queries
For the evaluations below, we used PostgreSQL 8.1.3, com-
piled with the default optimization options. We use a Dual-
core Intel Pentium D (2.8GHz, 1024MB of main memory)
machine running the current Debian SID distribution with
a 2.6.16 Linux kernel.

We created 6 tables, each having 1 million shapelets with
1, 6, 15, 36, 55, and 120 coefficients. The coefficients are
initialized with random numbers chosen from a uniform dis-
tribution over [0, 1]. As all the presented operators do not
depend on the actual values of the coefficients but only on
the number of coefficients, the performance results are rep-
resentative for all smooth objects of these sizes.

Figure 10(a) shows performance measures for several op-
erations on these tables, along with the syntax for the opera-
tions themselves. The last line is a normalization operation,
which sets the total integral of a shapelet to one. All of these
operations, as expected, perform linearly in the number of
shapelet coefficients, with the SELECT queries performing a
little worse than the COUNT function.

To demonstrate certain features of our implementation
and data model using real data, we created a table of shape-
lets that represent the stars and galaxies in a 10k×10k im-
age from the Deep Lens Survey [19]. This image contains
approximately 140, 000 astronomical objects and represents
only 1/45 of the full DLS (which is a fairly small survey rel-
ative to those that will be completed in the next few years).

Rather than computing a full shapelet decomposition of
each object, to demonstrate an alternate form of input we
used the second moments and total integral of each object
(computed from the image) to define an elliptical Gaussian
(different from the circular Gaussian, which can be created
by our makeGaussian function). We then calculated the
shapelet coefficients for models (with 15 coefficients for each
object), by scaling and rotating circular Gaussians into el-
liptical Gaussians. As they are relatively small and blurry,
this simplified model is a good approximation for most stars
and galaxies in the image and still captures the more impor-
tant features of the data. Given a table (catalog) of center
points (c), ellipse parameters (a,b,theta), and total fluxes
(f), the following query creates our galaxies table:

CREATE TABLE galaxies AS (
SELECT rotate(scale(makeGaussian(c,1.0,f),a,b,TRUE),theta)
FROM catalog);

One of the most common queries on an astronomical data-
base is the basic window query to find all objects in a given
region. If we define “presence in a region” as having at least

575

half of an object’s flux in that region, we can formulate this
query for the box ((5000,5000),(5500,5500)):

SELECT * FROM galaxies
WHERE integrateBox(s, BOX ’((5000,5000),(5500,5500))’)

> 0.5*integrateAll(s);

We exported the retrieved shapelets as a PNG image, which
is shown in Fig. 10(b).

If we are interested in a detailed analysis of a single galaxy,
we may be concerned with any nearby objects that may con-
taminate our measurement (this issue in fact comes up sim-
ply when trying to compute the full shapelet decomposition
for multiple objects in one image). In this case, we are in-
terested in the overlap between our primary object and any
others in the image. Because we wish to define an overlap
operation that addresses “how much a neighboring object
impacts a central object”, it makes sense to define an asym-
metric overlap (with F our primary object and G a potential
neighbor):

overlap(F, G) :=

RR
f(x, y) g(x, y)dx dy`RR

f(x, y)dx dy
´2 (30)

This is different from the probabilistic overlap function we
show in Fig. 7, which assumes that the objects are nor-
malized. Using this function and some low-level operators,
however, it is easy to create a new SQL function with the
desired definition:

CREATE FUNCTION neighbor_overlap(shapelet,shapelet)
RETURNS double precision AS
’SELECT overlap($1,$2)/integrateAll($1)^2 AS result;’

LANGUAGE SQL;

This demonstrates the ease with which specific high-level
operators can be defined using our low-level building blocks.

4.3 Indexing Shapelets
One advantage of using shapelets is their local extent,

which allows us to index them using conventional crisp ob-
jects such as bounding boxes, to increase query performance.
In the following, we discuss how shapelets that represent
fields with positive values can be indexed using “approxi-
mate” bounding boxes. We provide error guarantees for the
operations supported by the indexing technique and eval-
uate our indexing approach by presenting the performance
measures for sample queries.

ε-Bounding Boxes
In analogy to standard indexing techniques in spatial data-
bases we strive to construct minimum bounding boxes. Other
crisp object representations, such as polygons, circles or el-
lipses can also be used to “bound” or circumference shapelets.
In our implementation, we choose rectangular bounding boxes
to leverage the existing R-tree support in PostgreSQL.

Since the shapelet basis functions are polynomials scaled
by a Gaussian, the shapelets’ values are guaranteed to fall off
quickly at large distances from the center point relative to
the scale factor β. However, the values will reach zero only
asymptotically. Therefore, any finite crisp bounding region
will be an approximation of the actual shapelet “extent.” It
is, however, possible to construct boxes such that (1) most
of the shapelet volume is inside the box, and/or (2) the val-
ues of the shapelet function outside the box are smaller than
a threshold. Operations on integral-normalized objects can

leverage the first criterion whereas operations on maximum-
normalized objects typically utilize the second criterion. To
support both kinds of operations, we combine these two cri-
teria and call a box an ε-bounding box of a shapelet s iff (1)
the total volume under the shapelet curve that is not inside
the box is smaller than or equal to ε, and (2) all shapelet
values outside the box are smaller than or equal to ε.

Operations and their Error Guarantees
Using ε-bounding boxes we can shortcut integral operations
(including image export), shapelet-shapelet intersection and
overlap, as well as pointwise evaluation queries.

Pointwise Evaluation. Calculating the value of a shapelet
at a certain point can be significantly sped up if the queried
point is outside the bounding box: we can approximate this
value by 0 with an error guarantee of ε.

Integral operations. Since the total volume of the shapelet
outside its bounding box is less than ε, any integral over a
box that does not intersect with the bounding box can be
immediately evaluated to zero with an error smaller than ε.
Similarly, the same guarantee holds if shapelets are output
as pixel images. Here, any pixel that does not intersect with
the bounding box can be evaluated to zero. Moreover, if the
image does not intersect with the bounding box, all pixels
in the image can be evaluated to zero, resulting in a total
error (summed over all pixels) of not greater than ε.

Shapelet intersection/overlap. Consider the case that the
shapelets represent probabilistic density functions (PDFs)
or any other integral-normalized data. If shapelets pF and
pG model the locations of two objects F and G, ε-bounding
boxes can support computing the PDF p∩ of finding both
objects at the same location: If the bounding boxes of pG

and pF do not overlap, we can safely approximate p∩ with
zero everywhere. The maximum point-wise error we would
introduce here is bound by ε. Because p∩ = pG · pF , the
value of p∩ will be smaller than or equal to 1 · ε in any one
of the two bounding boxes and not greater than ε2 outside
both bounding boxes. While our implementation currently
does not support a pointwise min/max intersection defini-
tion, it should be noted that our ε-bounding boxes would
also support indexing on those operations.

Finding a Tight ε-Bounding Box
Finding bounding boxes that respect the integral criterion
(i.e., the volume under the shapelet outside the bounding
box is smaller than ε) can be done using a binary search.
We fix the center of the bounding box at the center coordi-
nates of the shapelet itself. Finding a tight bounding box
proceeds in two steps: we expand an initial square box until
the integral criterion is met, and then shrink it to a tight
rectangular bounding box. We start with a square whose
sides have a length of 2β

√
nmax, because at this range the

polynomials usually still dominate the Gaussian, and double
its size at every step. The dominating influence of the Gaus-
sian guarantees that after a few steps a sufficiently large
bounding square can be found (in all our experiments, 10
steps were sufficient.) During the second phase we perform
a “two-dimensional” binary search to find a tight rectangu-
lar bounding box. After 40 integral queries we then have a
tight bounding rectangle.

To satisfy the second criterion (all shapelet values out-
side the bounding box are bound by ε) we derived an upper
bound for shapelet values outside a square box around the

576

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
in

 s
ec

on
ds

Number of Shapelet Coefficients of Each Shapelet

SELECT COUNT(s)
SELECT SUM(integrateAll(s))

SELECT SUM(integrateBox(s, Box ’...’))
UPDATE S SET s = translate(s, Point ’...’)

UPDATE S SET s = s * (1.0 / integrateAll(s))

(a) Performance for 1mill. shapelets (b) Galaxies PNG image

with index

without index

0
.2

0
7

0
.0

1
3Q
u

e
ry

 t
im

e
 (

s
e

c
)

 0

 5

 10

 15

 20

 25

ValueIntegral 2Integral 1

3
9
.6

3

PNG Export

(c) Performance with and without index

Figure 10: Performance of sample queries and sample query output.

shapelet center as a function of the shapelet coefficients.
Here, we strictly increase the values of the shapelet coef-
ficients to produce a smooth, unimodal envelope function
that bounds the actual shapelet from above and is symmet-
ric about the shapelet center. We then evaluate this func-
tion at one corner of the box to have an upper bound for
the original shapelet extent (more details are covered in the
technical report [21]). To find an actual ε-bounding box, we
use both criteria (integral bound and value bound) in our
binary search algorithm.

Experimental Evaluation
In the following experiments, we used the astronomical data
described in Section 4.2. To simplify the definitions of the
operators, we scaled the values of all the objects so that the
average flux of each galaxies is 1 (this update query took
20 seconds to complete). This scaling is merely to make
the appropriate values for ε more intuitive for the reader,
as the native astronomical units give total integrals on the
order of 106 for typical objects. All galaxies are distributed
over a rectangular region from the origin to (10000,10000).
We then added a new column bbox 0 005 to the table and
populated it by 0.005-bounding boxes.

Computing all 140,000 bounding boxes and building an R-
tree took 130 and 84 seconds, respectively. The size of the
bounding boxes varies from 9.26 to 273 pixels on a side with
an average of 28.6; most of the created boxes are roughly
square-shaped.

We anticipated major speedups for expensive queries. We
evaluated the index by issuing integral, pointwise evalua-
tion (“value query”), and PNG export queries. The re-
sults are shown in Fig. 10(c). Integral 1 and 2 queries
selected all shapelets that had a total volume of at least
0.01 over the boxes ((1000, 1000), (2000, 2000)) and
((1000,1000),(5000,5000)) with a volume of at least 0.05,
respectively. The first query returned 14 galaxies, the sec-
ond returned 46. The value query summed over the re-
sult of evalAtPoint. Without using the index, all shapelets
were queried, whereas with using the R-tree an overlap with
the bounding box can be used as a pre-selection criterion.
As expected, the queries that use the bounding boxes as
pre-selection condition outperform the queries without in-
dex support.

5. RELATED WORK
As noted above, most work on vague spatial objects [1, 8,

11, 15] has focused exclusively on what we have called “fuzzy
regions”, and the data model that has been defined for these
regions is much more elaborate than the “core” operations
we have described here. As this data model has been de-

veloped with a representation involving contour polygons
in mind, however, many of the additional operations have
been motivated by their simplicity in a contour-based rep-
resentation, rather than their usefulness for particular real-
world datasets. Thus, it may be that some of these oper-
ators are unnecessary if they can be replaced by methods
that are optimized for non-contour representations such as
shapelets (e.g., using moment-based metric operations in-
stead of threshold-contour metric operations). Of course,
developing a technique to compute contours for shapelets
would be a major step towards supporting the full fuzzy
region data model with shapelets.

Work on probabilistic data in databases has generally not
dealt extensively with spatial probability distributions, and
thus the link between probabilistic work and fuzzy regions
has thus far been somewhat tenuous. Most work on spatial
probability distributions has focused on query optimization
and indexing for multidimensional probability distributions
(e.g. [5, 17]) that must be sampled by the database itself;
the values can be calculated at any discrete point (and this
sampling can then be used to compute integrals, contours,
etc. numerically). This sampling is assumed to be expen-
sive, and the goal is to reduce the amount of sampling nec-
essary. Some of the index structures (such as the U-Tree in
[17]) developed for probabilistic databases may prove use-
ful for other integral-normalized data, as they essentially
support R-tree-like indexes with multiple bounding boxes
(corresponding to different thresholds) for each object.

The astronomical literature describing shapelets as an im-
age processing technique also has much more to offer than
is described here. The computation of shapelet coefficients
from images has many subtle details that we have not ad-
dressed, and a much more extensive discussion can be found
in [4]. There are also other mathematical features of shapelets
that may optimize certain operators. In particular, shapelets
may be expanded into a basis in polar coordinates instead of
Cartesian coordinates [3, 10], which simplifies rotation and
integration over circular regions.

In addition, databases are increasingly being used to store
large astronomical catalogs. Because of differences between
geographic and astrometric coordinate systems, and the in-
trinsic vagueness of stars and galaxies as spatial objects,
off-the-shelf spatial data systems are often less useful for as-
tronomy, requiring custom solutions [16]. As shapelets have
already been shown to be useful in a wide variety of astro-
nomical tasks, a shapelet data type could be an important
addition to future astronomical databases, providing generic
operations on vague spatial objects as well as astronomy-
specific functions.

It should be noted that the notion of imprecise spatial

577

data can also be found in the context of moving object
databases, e.g., [7, 18]. This work, however, is primarily
concerned with query processing techniques and not under-
lying data models and operations for vague spatial data.

The conceptual similarity of shapelets to other image pro-
cessing and compression techniques, particularly the broad
and well-established family of wavelet techniques (see, e.g.
[12]), suggests that wavelets may also provide excellent base
data types for vague spatial objects. This may be the case,
and it is certainly premature to rule out any wavelet-based
representation of vague spatial objects. However, it should
be noted that our ability to compute many of the low-level
operations with Shapelets is related more to the unique
properties of Hermite polynomials than features shared by
most basis-expansion image processing techniques. The com-
putation of integrals and geometric transforms for wavelets
are particularly large obstacles in generalizing our techniques
to wavelets.

6. CONCLUSIONS AND FUTURE WORK
The prototype implementation described above is, to our

knowledge, the first for vague spatial objects, and the low-
level building blocks it provides allow it to support a va-
riety of higher-level data models. While certain functions
should be optimized (caching certain operation matrices is
an obvious start) and others implemented (notably inte-
gral moments) before we can consider it to be functionally
complete, it already demonstrates the versatility of our ap-
proach. Many of the topics we have mentioned briefly above
bear further examination, however.

An optimized contouring algorithm for shapelets is a re-
alistic goal. Together with a complete library for standard
vector-based objects, this would greatly enhance our ability
to support operations on maximum-normalized objects.

As all of our operators take the form of matrices, function
composition often takes the form of matrix multiplication.
This suggests an interface based on object-oriented func-
tionals (and perhaps even table-based storage of operators),
which could make our “building blocks” even more powerful.

The possibility of using only a few coefficients of objects
to calculate approximate results for complicated operations,
introduced in Section 3.1, shows great promise. However,
providing error guarantees for these approximations appears
to be a difficult and intensely mathematical task.

While the threshold-based indexing scheme we developed
is quite effective, it may be worthwhile to explore index
structures designed exclusively for vague spatial objects. The
most obvious approach would take the form of some “multi-
ple concentric bounding box” index structure, but there may
also be possibilities involving simple analytic functions.

Although some of these topics are potentially difficult,
their potential as well as the work we have described earlier,
suggest that shapelets may be an ideal starting point for
future work on vague spatial objects.

Acknowledgment This work is in part supported by the
National Science Foundation under Awards No. IIS-0326517
and ATM-0619139, as well as an NSF Graduate Research
Fellowship.

7. REFERENCES
[1] D. Altman. Fuzzy Set Theoretic Approaches to

Handling Imprecision in Spatial Analysis. Int. Journal
of Geographical Inf. Systems, 8(3):271–289, 1994.

[2] G. B. Arfken, H. J. Weber. Mathematical Methods For
Physicists (4th ed). Academic Press, 1995.

[3] G. Bernstein, M. Jarvis. Shapes and Shears, Stars and
Smears: Optimal Measurements for Weak Lensing.
The Astronomical Journal 123(2), 2002.

[4] R. H. Berry, M. P. Hobson, S. Withington. Modal
Decomposition of Astronomical Images with
Application to Shapelets. Monthly Notices of the
Royal Astronomical Society (MNRAS), 354(1), 2004.

[5] R. Cheng, S. Prabhakar. Managing Uncertainty in
Sensor Databases. SIGMOD Record, 32(4), 2003.

[6] P.H. Christensen. Contour rendering. SIGGRAPH
Comput. Graph. 33(1):58–61, 1999.

[7] V.T. de Almeida, R.H. Güting. Supporting
uncertainty in moving objects in network databases.
ACMGIS, 31–40, 2005.

[8] M. Erwig, M. Schneider. Vague Regions. In
Symposium on Large Spatial Databases, LNCS 1262,
298–320, 1997.

[9] R.H. Güting, M. Schneider. Moving Objects
Databases. Morgan Kaufman, 2005.

[10] R. Massey, A. Refregier. Polar Shapelets. MNRAS,
363:197, 2005.

[11] A. Pauly, M. Schneider. Topological Predicates
Between Vague Spatial Objects. In Advances in
Spatial and Temporal Databases, 9th International
Symposium (SSTD’05), LNCS 3633, 418–432, 2005.

[12] R.M. Rao, A.S. Bopardikar. Wavelet Transforms:
Introduction to Theory & Applications. Prentice Hall,
1998.

[13] A. Refregier. Shapelets: I. A Method for Image
Analysis. MNRAS, 338:35–47, 2003.

[14] A. Refregier, D. Bacon Shapelets: II. A Method for
Weak Lensing Analysis. MNRAS, 338:48–56, 2003.

[15] M. Schneider. Design and Implementation of Finite
Resolution Crisp and Fuzzy Spatial Objects. Data &
Knowl. Eng. 44(1):81-108, 2003.

[16] A. Szalay, P. Kunzt, A. Thakar, J. Gray, D. Slutz,
R. Brunner. Designing and mining multi-terabyte
astronomy archives: the Sloan Digital Sky Survey
SIGMOD Record, 451–462, 2000.

[17] Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao,
S. Prabhakar. Indexing Multi-dimensional Uncertain
Data with Arbitrary Probability Density Functions.
Proc. 31st VLDB Conference, 922–933, 2005.

[18] G. Trajcevski, O. Wolfson, K. Hinrichs,
S. Chamberlain. Managing uncertainty in moving
objects databases. ACM Trans. Database Syst.,
29(3):463-507, 2004.

[19] J.A. Tyson, D. Wittman, I. Dell’Antonio, A. Becker,
V. Magoniner, and DLS Team. The Deep Lens
Survey: Overview. Bulletin of the AAS, 33:1464, 2001.

[20] Q. Yang, J. Snyder. Map Projection Transformation:
Principles and Applications. CRC Publisher, 1999.

[21] D. Zinn, J. Bosch, M. Gertz. Modeling and Querying
Vague Spatial Objects Using Shapelets. Technical
Report, University of California at Davis, April 2007.

578

	Introduction
	Motivation
	Contributions

	Core Operations and Low Level Counterparts
	Topological Operations
	Metric Operations
	Geometric Transforms
	Representations of Localized Fields

	Representing Localized Fields With Shapelets
	Pointwise Arithmetic and Overlap
	Integral and Moment Operations
	Geometric Operations

	Realization and Evaluation
	Shapelet PostgreSQL Extension
	Experimental Evaluation
	Indexing Shapelets

	Related work
	Conclusions and Future Work
	References

